
Querying Property Graphs with XPath

Marko Junkkari(B) , Sami-Santeri Svensk , and Jyrki Nummenmaa

Tampere University, Tampere, Finland
{marko.junkkari,jyrki.nummenmaa}@tuni.fi,

samisanterisvensk@gmail.com

Abstract. XPath has been established as the de facto standard for searching data
items from hierarchical XML structures. Due to its popularity and compact path
expressions, XPath has also been recognized as a query language candidate for
graph databases where the structure does not follow a hierarchical order. Graph
databases are based on graph theory and the data are organized accordingly. Among
different types of graphs, property graphs have gained special interest because they
allow data associated with edges as well as vertices, reflecting that edges represent
relationships and relationships are generally allowed to have properties, just like
entities. Earlier proposals to apply XPath to graph databases do not allow manipu-
lation of the properties of edges in a property graph. The present study focuses on
this issue. We show how XPath can be applied to full-scale property graphs. This
requires a novel mapping of XPath primitives to the primitives of property graphs.
Based on this mapping, we define graph-based semantics for XPath by regular
path queries, an established logical approach for querying vertices and edges.

Keywords: Property graph · Graph database · XPath · Regular path query

1 Introduction and Related Work

Graph databases [2, 6, 17, 26] are in growing demand for analyzing linked data in various
domains [3, 26]. In graph databases, the data is organized using graph structures, emerg-
ing from heavily studied graph theory [5], giving graph databases a strong theoretical
foundation [20]. There is, however, no common data model for all graph databases [34].
Common features exist, though, like for instance index-free adjacency [34]. Retrieving
data from graph databases can be performed using the graph operations defined in the
graph theory [2, 12]. Like other NoSQL databases, graph databases store semi-structured
data containing the schema within the data [13].

There is a consensus on modeling entities as vertices and their relationships as edges.
A special type of graph data model, called property graphs [33], has emerged both in
the theoretical context, e.g. [18, 26], and in practical implementations [29]. A property
graph relies on vertices and edges, both of which can be labeled. The most popular
graph database Neo4J [29] is based on the property graph model. The graph database
community has recently seen the rise of commercial query languages such as Cypher
[28], PGQL [32], SQL/PGQ [16] and Gremlin [7]. In 2024, Graph Query Language
(GQL) became the standard query language for property graphs [21].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
P. K. Chrysanthis et al. (Eds.): ADBIS 2025, CCIS 2676, pp. 67–76, 2026.
https://doi.org/10.1007/978-3-032-05727-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-05727-3_7&domain=pdf
http://orcid.org/0009-0009-8741-3863
http://orcid.org/0009-0002-0700-4840
http://orcid.org/0000-0002-7476-7840
https://doi.org/10.1007/978-3-032-05727-3\sb {7}

68 M. Junkkari et al.

The history of graph query languages starts from the 1980s, when the language G
was proposed in [15] to query edge-labeled graph with regular expressions. Mendelzon
and others [27] created the semantics based on language G to find a simple path between
two vertices. This approach describing paths is nowadays known in literature as regular
path queries (RPQ). RPQ:s have influenced the research from then on and have had a
huge impact for query language design, and the navigation can be found from many
of those languages. Since then, RPQs have been extended with various extensions to
enhance expressivity. Such extensions include RPQ with inverse [14], conjunctive RPQ
[14], extended conjunctive RPQ [9] and RPQ with data tests [25]. Path queries bring
an expressive way to query databases [4]. In our opinion, RPQ forms a similar basis to
graph query languages as relational algebra or calculus formed to the relational query
languages.

Pattern matching, finding nodes connected by paths, and aggregating the results are
important features for graph query languages [4, 38]. These features have also been
identified to form the core of XPath [35], a thoroughly researched e.g. [10, 11] query
language to address parts in XML [36] documents. Even though XPath is designed to
operate on tree-like-structured XML documents, Buneman [13] sees these structures
essentially as rooted graphs. Angles and others [2] describe XML as restricted type of
graph and see essential theoretical basis, graph theory influencing both graph databases
and XML documents. Despite the fact that XPath has been developed originally for
addressing parts of XML documents, Libkin and others [24] see XPath as probably
overlooked as a candidate language for graph databases, as its goal seems very similar
to querying graph databases.

Libkin and others [24, 25] have noted the proximity of XPath to first order logic or
modal logic and van Rest and others [32] compare XPath to Tarski’s algebra, which has
similarities to the basics of many graph query languages. XPath and RPQ have been
compared in the context of graph databases [8, 19, 23, 24]. Oltenau and others [30]
describe the relationship between XPath and RPQ as an abstraction of the navigational
features of XPath, where support for XPath axes child, descendant, parent and ancestor
is provided. Despite the similarities, XPath cannot fully be subsumed by RPQ or its var-
ious extensions [24]. In some scenarios, XPath goes beyond the path queries by defining
patterns that cannot be captured by paths [25]. Libkin and others [25] study the capa-
bilities of potential languages, including XPath, to query graph databases combining
topology and data. According to them, XPath succeeds by describing the properties of
paths and patterns, considering both their purely navigational aspects and the data con-
tained in the database. Their analysis is on a theoretical level, and they do not provide an
implementation or an approach for implementation. Barceló [8] has mentioned XPath’s
branching operator providing good expressive power in graphs. In general, there is a
wide consensus that XPath is a promising querying approach to graph data model.

Libkin and others [24] have created semantics for XPath in graphs and studied
the expressiveness and complexity of various XPath formalisms called GXPath. Their
semantics were expressed with respect to a graph structure called data graph. Research
of XPath in graphs has focused on simple graph structures like data graphs [24, 25],
where the data is contained in nodes as single values. There has not yet been a direct
link between the formalism of XPath and the increasingly common property graph data

Querying Property Graphs with XPath 69

model, even though both are data models designed for semi-structured data and have
similar capabilities to store data into properties of the elements building the structure
of the model. We define how the primitives of XPath are mapped to the primitives
of the property graph. The path steps of XPath are not labeled, and they do not have
properties while the edges of a property graph are labeled and may possess properties.
We manipulate both vertices and edges as XPath nodes. We match selected fragments
of XPath to the features of property graphs and define compilation from XPath to RPQ
by attribute grammars [22].

The rest of the paper is organized as follows. Section 2 introduces the graph structure
and notations for regular path queries. In Sect. 3, we define the mapping between XPath
primitives and graph primitives. In this context, we give an informal introduction for
using XPath in property graphs. In Sect. 4, we define PRQ based semantics and use them
to evaluate an example query. We give our conclusions in Sect. 5.

2 Property Graphs and Regular Path Queries

Property graphs are directed multigraphs, where vertices represent entities and edges
relationships between them [5, 12]. Figure 1 illustrates this conceptualization without
properties. Customer, Order, Product, Supplier and Category are entities, modeled as
vertices. Arrows represent relationships, modeled as directed edges.

Fig. 1. Example graph

We follow the definitions of Angles and others [5], however, we do not allow multi-
labeling of vertices and edges nor multivalued properties. Let L be a set of labels, P a
set of properties and PV a set of property values. Then, the property graph can formally
be defined as the tuple G = (V, E, ρ, λ, σ), where.

1. V is a finite set of the vertices.
2. E is a finite set of edges.
3. ρ: E → (V × V) assigns each edge of E to a pair of nodes in V.
4. λ: (V ∪ E) → L labels edges and vertices with the set L.
5. σ: (V ∪ E)(V ∪ E) × P → PV assigns a value to a property of a vertex or edge.

70 M. Junkkari et al.

Following this notation, the example graph used through the paper can be expressed
as follows:

• V = {v1, v2, v3, v4, v5, v6}
• E = {e1, e2, e3, e4, e5}
• P = {type, name, quantity, country}
• L = {Customer, Supplier, Category, Product, Order, SUPPLIES, PURCHASED,

ORDERS, PART_OF, FOLLO WS}
• λ = {〈v1, Customer〉, 〈v2, Customer〉, 〈v3, Order〉, 〈v4, Supplier〉,

〈v5, Pr oduct〉, 〈v6, Category〉, 〈e1, FOLLOWS〉, 〈e2, PURCHASED〉,
〈e3, ORDERS〉, 〈e4, SUPPLIES〉, 〈e5, PART _OF〉}

• ρ = {〈e1, 〈v1, v2〉〉, 〈e2, 〈v1, v3〉〉, 〈e3, 〈v3, v5〉〉, 〈e5, 〈v5, v6〉〉,
〈e5, 〈v4, v6〉〉}

• σ = {〈〈v6, type〉, junk〉, 〈〈v3, name〉, Smith〉, 〈〈e3, quantity〉, 10〉,
〈〈v4, Country〉, U F〉, 〈〈v5, Name〉, toy 〉}
We can allow L to assign similar labels to vertices and edges. Our example does not

do that, so we can use labels when referring to vertices and edges.
Regular path queries are based on regular expressions determining one or several

paths in a graph. Formally, a regular path query can be expressed by a triple (X, RE, Y),
where X and Y are variables that refer to the end and start vertices of the underlying
path expression, and RE is a regular expression over the vocabulary of edge labels.
Operations, such as repetitions (+, *), can be used and a regular expression may contain
a complex clause with patterns including various edges. However, for the purpose of the
present study, complex regular expressions are not needed. RE can be represented in the
form -label- > where the label may involve the + postfix for denoting one or several
occurrences of the edge. In RE, it is also possible to express that no label is specified. This
is denoted by -·->. Thus, any path can be denoted by -· + – >. Property value restrictions
for an edge can be represented within parentheses. For example, -ORDERS(Quantity =
10)- > refers to the order edges that have the quantity property with value 10.

The labels of vertices can be restricted with additional facts of the form (X, is, label),
where X is a variable. For example, (X –· + – > Y) � (X, is, Customer) � (Y, is, Order)
refers to any path from a customer vertex to an order vertex. Property value restrictions
of vertices can be represented by additional facts. For example, (Z, is, Category) � (Z,
has, type = ‘junk’) means that Category has an attribute with name ‘type’ and value
‘junk’.

3 XPath for Graph Database

XPath consists of path steps Axis::node_test[predicate] separated by slashes (/). An axis
determines the relationships between a context node and the connected processing nodes.
The most common axes are self, child, parent and descendant-or-self. Element label and
attribute are the most common node types. A predicate can determine conditions for
both nodes and paths. Using predicates, a search tree structure can be represented in a
serialized form, where each branch can have individual predicates. For the most common
axes, abbreviators are established: the child axis is the default value, and it is typically

Querying Property Graphs with XPath 71

not expressed, double dash (//) denotes descendants, dot (.) corresponds to the self axis,
two dots (..) determines the parent axis and @ is refers to an attribute.

The simplest way to apply XPath to graphs would be by mapping nodes to ver-
tices and child relationships to directed edges. For example, the XPath expression Cus-
tomer/Product would be mapped to the edge Customer → Product. The expression
Customer//Category would correspond to any directed path from Customer to Category.
Following this approach, attributes can be used in referring to the properties of vertices.
For example, Category[@type =’junk’] could denote the type property having value
‘junk’ in a Category node.

The problem of this trivial approach is that it is not suitable for property graphs
where edges are labelled and may have properties. The child relationships in XML are
not labelled, and they have no properties. Therefore, we propose that also edges are
manipulated as XPath nodes. In other words, we map a path in a graph to an XPath path.
A path in a graph is started from a vertex, and every other member is an edge, and every
other a vertex [15]. For example, in the expression a/b/c/d/e, the nodes a, c and e refer
to vertices and b and d refer to edges. In other words, a/b returns the edge b and a/b/c
returns the vertex c. It is possible to refer the properties of vertices and edges as our
example in Sect. 4 will demonstrate.

Like in XPath, the asterisk refers to an unlabeled node, for both vertices and edges.
For example, Order/*/Product means a step from an order to a product via any edge
whereas Order/ORDERS/* means any successor of an order through an ORDERS edge.
The descendant notation can also be used in the context of graphs. The path Cus-
tomer//Category determines all paths from a customer to a category. It is worth not-
ing that the descendant relationship may refer to either vertices or edges if the asterisk
is used. For example, in the expression Order//* the asterisks may refer to ORDERS,
Product, PART_OF or Category. As such this kind of expression is hardly useful but
this allows powerful expressions in queries containing uncertain aspects. For example,
it is possible to determine a path from a node to another and give a value restriction to
an attribute in an edge or a vertex in the path. In the path Customer//*[unitPrice > 10
000]//Category, the unit price can be in any node between Customer and Category .

The branches can be expressed between square brackets in serialized expressions.
For example, the path Order[ORDERS/Product[@name = ‘toy’]] refers to an order that
contains a toy. The double dot denotes a parent relationship. In the context of graphs,
we interpret this as traversal to the inverse direction in a directed edge. For example,
the path Product/../Supplier denotes the inverse direction from a product to a supplier.
The parent notation can also be used in serialized expressions. For example in the path
Product[../Supplier[@Country =’UK’]/*/Category, the fragment../Supplier[@Country
=’UK’] means that a product vertex must have an inverse path to a supplier whose
country is UK.

Above, the abbreviations of XPath are used for navigation. Basically, navigation
is based on axes that determine the displacement from a context node to its relatives.
The relationship between XPath axes and their interpretation in graph databases is as
follows, with the arrow from axis to interpretation: child → immediate successor; parent
→ immediate predecessor; descendant → successor; ancestor → predecessor; self →
self; descendant-or-self → successor or self; ancestor-or-self → predecessor or self;

72 M. Junkkari et al.

attribute → property. The axes following, preceding, following-sibling, and preceding-
sibling do not have an interpretation in a g raph.

4 Regular Path Query Based Semantics

Attribute grammars (AGs), widely used in compilers [1, 37], are used to define both the
syntax and semantics of a formal language [22, 31]. We introduce only such notational
conventions for attribute grammars that are applied in this study.

Let AG = (G, A, R), be a triple where G is a context free grammar, A is a finite
set of attributes and R is a finite set of semantic rules associated with the attributes. A
context free grammar G = (NT, T, P, D) defines a syntax for a formal language. In G,
NT is a finite set of non-terminals and T is a finite set of terminals such that NT ∩ T =
∅. Elements in NT and T are called grammar symbols. P is a finite set of productions.
Each production is of the form X → α, where X ∈ N and α ∈ (NT ∪ N)*. P may contain
alternative productions e.g. X → α1 and X→ α2 so that α1 	= α2. D (∈ N) is a start
symbol. Each attribute (∈ A) is associated with one or several non-terminals and if X ∈
N, then the attribute set of X is denoted by A(X). A(X) is partitioned into two exclusive
sets: inherited attributes I(X) and synthesized attributes S(X) so that I(X) ∩ S(X) = ∅ and
I(X) ∪ S(X) = A(X). Usually there are two ways to denote the selection of an attribute
a of symbol X. One follows a record style, X.a; the other one follows a functional style
a(X). In this paper we adopt the second one. Each semantic rule (∈ R) is associated with
a production p (∈ P) to define the evaluation of a synthesized attribute of the symbol
in the left hand side of p, or the evaluation of an inherited attribute of a symbol on the
right-hand side of p.

We define the context free grammar GXRPQ as the tuple (NT, T, P, Q) where NT =
{Q, P, E, V, VN, EN}, T = {/, //,.., *, [,], @, =, 	=, <, >} ∪ E_names ∪ V_names ∪
A_names ∪ A_values. Q is the starting symbol, and P is the set of productions represented
in the second column of Table 1. E_names and V_names are the names of edges and
vertices, respectively. A_names and A_values are the sets of property names and values.
We define the attribute grammar AGXRPQ to be the triple (GXRPQ, A, R) where A = {v,
result, ret, name, var, first_var} and R is the semantic rules associated with the P. The
attributes in A have the following intention:

• v is an inherited attribute for the variable associated with a vertex or an edge.
• result is a synthesized attribute that describes the final conjunctive query of the regular

path queries.
• res is a synthesized attribute that contains a set of regular path queries associated

within parsing the XPath query.
• var is a synthesized attribute that contains the variable associated with a vertex.
• first_var is a synthesized attribute that contains the variable associated with the first

vertex of a sub-path.
• The attributes are associated with the grammar symbols as follows:
• I(V) = I(V) = { v}
• S(Q) = {result }
• S(P) = {ret, first_va r}
• S(E) = S(EN) = {name}

Querying Property Graphs with XPath 73

• S(VN) = {name, var }
• S(V) = {var, ret }

The rules of R are represented in the third and fourth columns of Table 1. In the third
column, the function new() generates a new variable.

Table 1. An attribute grammar for compiling XPath to regular query queries

Related to the graph of Fig. 1, an example evaluation for an XPath query

Customer/*/Order/ORDERS[@quantity=10]/Product[PART_OF/
Category[@type = ‘junk’]]/../Supplier

is given in Fig. 2. The query associates customers and suppliers in a case where a
customer has bought 10 pieces of products whose category are ‘junk’, and the products
have the same supplier. Variables are labeled X1, X2, X3, etc. following their creating
order.

74 M. Junkkari et al.

Fig. 2. Parsing an XPath Query.

5 Conclusions

The likely reason why XPath has not been applied to property graphs is that XML
data model does not contain the properties of relationships. We solve the problem by
mapping XPath nodes to both vertices and edges in the graph data model, thus enabling
consistent handling of vertices and edges. Using attribute grammars, we compile XPath
expressions to regular path queries in a natural way, giving a framework to compile XPath

Querying Property Graphs with XPath 75

to other graph query languages. Expressing XPath’s nested paths in the predicates treats
structural and data filtering as equal, which can be seen as a non-conventional approach.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers Principles, Techniques and Tools. Addison-
Wesley, Reading (1986)

2. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1), 1–39
(2008)

3. Angles, R., Prat-Perez, A., Dominguez-Sal, D., Larruba-Pey, J.L.: Benchmarking database
systems for social network. In: First International Workshop on Graph Data Management
Experiences and Systems, pp. 1–7 (2013)

4. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., Vrgoč, D.: Foundations of modern
query languages for graph databases. ACM Comput. Surv. 50(5), 1–40 (2017)

5. Angles, R.: The Property Graph Database Model. Universidad de Talca, Department of
Computer Science (2018)

6. Angles, R., et al.: G-CORE: A core for future graph query language. In: Proceedings of the
2018 International Conference on Management of Data, pp. 1421–1432 (2018)

7. Apache TinkerPop, Gremlin Query Language. https://tinkerpop.apache.org/gremlin.html.
Accessed 16 Oct 2024

8. Barceló, P.: Querying graph databases. In: Proceedings of the 32nd ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pp. 175–187 (2013)

9. Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path queries over
graph-structured data. ACM Trans. Database Syst. 37(4), 1–46 (2012)

10. Benedikt, M., Koch, C.: XPath leashed. ACM Comput. Surv. 41(1), 1–54 (2009)
11. Benedikt, M., Wenfei, F., Kuper, G.: Structural properties of XPath fragments. Theoret.

Comput. Sci. 336, 3–31 (2005)
12. van Bruggen, R.: Learning Neo4j: Run Blazingly Fast Queries on Complex Graph Datasets

with the Power of the Neo4j Graph Database. Packt Publishing (2014)
13. Buneman, P.: Semistructured data. In: Proceedings of the Sixteenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, pp. 117–121. (1997)
14. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of conjunctive

regular path queries with inverse. In KR 2000, 176–185 (2000)
15. Cruz, I., Mendelzon, A., Wood, P.: A graphical query language supporting recursion.

SIGMOD Record 16(3), 323–330 (1987)
16. Deutsch, A., et al.: Graph pattern matching in GQL and SQL/PGQ. In: Proceedings of the

2022 International Conference on Management of Data, pp. 2246–2258 (2022)
17. Foulds, L.R.: Graph Theory Applications. Springer, New York (1992)
18. Francis, N., et al.: Cypher: An evolving query language for property graphs. In: Proceedings

of the 2018 International Conference on Management of Data, pp. 1433–1445. (2018)
19. Furche, T., Linse, B., Bry, F., Plexouakis, D., Gottlob, G.: RDF querying: Language constructs

and evaluation methods compared. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U.
(eds), Reasoning Web. Reasoning Web 2006. LNCS, vol. 4126, pp. 1–52, Springer, Heidelberg
(2006)

20. Harrison, G.: Next Generation Databases NoSQL and Big Data. Apress (2015)
21. ISO, ISO/IEC 39075:2024. https://www.iso.org/standard/76120.html. Accessed 16 Mar 2025
22. Knuth, D.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–145 (1968)
23. Kostylev, E., Reutter, J., Vrgoč, D.: Static analysis of navigational XPath over graph databases.

Inf. Process. Lett. 116(7), 467–474 (2016)

https://tinkerpop.apache.org/gremlin.html
https://www.iso.org/standard/76120.html

76 M. Junkkari et al.

24. Libkin, L., Martens, W., Vrgoč, D.: Querying graph databases with XPath. In: Proceedings
of the 16th International Conference on Database Theory, pp. 129–140 (2013)

25. Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63(2), 1–53 (2016)
26. Maiolo, S., Etcheverry, L., Marotta, A.: Data profiling in property graph databases. ACM J.

Data Inf. Qual. 12(4), 1–27 (2020)
27. Mendelzon, A., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J. Comput.

24(6), 1235–1258 (1995)
28. Neo4J, Cypher Query Language. https://neo4j.com/developer/cypher/. Accessed 28 Oct 2024
29. Neo4J. https://neo4j.com/. Accessed 16 Oct 2024
30. Oltenau, D., Furche, T., Bry, F.: Evaluating complex queries against XML streams with

polynomial combined complexity. Key Technol. Data Manage. 3112, 31–44 (2004)
31. Paakki, J.: Attribute grammar paradigms - a high-level methodology in language implemen-

tation. ACM Comput. Surv. 27(2), 196–255 (1995)
32. van Rest, O., Hong, S., Jinha, K., Meng, X., Chafi, H.: PGQL: a property graph query lan-

guage. In: Proceedings of the Fourth International Workshop on Graph Data Management
Experiences and Systems, pp. 1–6 (2016)

33. Rodriquez, M., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc. Inf. Sci.
Technol. 36(6), 35–41 (2010)

34. de Virgilio, R., Maccioni, A., Torlone, R.: Converting relational to graph databases. In: First
International Workshop on Graph Data Management Experiences and Systems, pp. 1–6 (2013)

35. W3C, XML Path Language (XPath). Accessed 16 Oct 2024
36. W3C, Resource Description Framework (RDF) Concepts and Abstract Syntax. Accessed 16

Oct 2024
37. Waite, W., Goos, G.: Compiler Construction. Springer, New York (1983)
38. Wood, P.: Query languages for graph databases. ACM SIGMOD Rec. 41(1), 50–60 (2012)

https://neo4j.com/developer/cypher/
https://neo4j.com/

	 Preface
	 Organization
	 Contents
	Query Optimization
	iSearch: Seek Acceleration Through Interpolation in Smart Storage Settings
	1 Introduction
	2 Background and Related Work
	2.1 Adaptive Algorithms

	3 iSearch
	4 Experimental Evaluation
	5 Discussion
	6 Conclusion
	References

	Extending the Applicability of Bloom Filters by Relaxing Their Parameter Constraints
	1 Introduction
	2 Rational Bloom Filter
	3 Variably-Sized Block Bloom Filters
	4 Implementation Artifacts
	5 Related Work
	6 Conclusion
	References

	CoDD: A Constraint-Based Dataset Discovery Tool for Open Data Lakes
	1 Introduction
	2 Related Work
	3 System Architecture and Demonstration Outline
	3.1 CoDD Profiler
	3.2 CoDD WebUI
	3.3 Demo Setup

	4 Conclusion
	References

	Spatio-Temporal and Graph Data
	Could More Be Less: The Case of Location(s) Awareness in Time Series Prediction
	1 Introduction and Motivation
	2 Related Works
	3 Datasets and Methodology
	4 Experimental Results
	5 Concluding Remarks
	References

	Spatio-Temporal Data and Molecular Dynamics: Challenges and Opportunities (Vision Paper)
	1 Introduction and Motivation
	2 Preliminaries
	3 Spatio-Temporal Data Challenges
	3.1 Query Processing
	3.2 Spatio-Temporal Data Compression
	3.3 Visual Analytics and Simulation
	3.4 Machine Learning and MDS

	4 Concluding Remarks
	References

	From ER Conceptual Models to Document-Based NoSQL Logical Models
	1 Introduction
	2 Labeling and Translation Rules
	3 Conclusion
	References

	Querying Property Graphs with XPath
	1 Introduction and Related Work
	2 Property Graphs and Regular Path Queries
	3 XPath for Graph Database
	4 Regular Path Query Based Semantics
	5 Conclusions
	References

	TimeVizBench: An Interactive Platform for Evaluating Techniques for Efficient Large Time Series Visualization
	1 Introduction
	2 TimeVizBench Architecture
	3 TimeVizBench User Interface
	4 Demonstration Outline
	References

	Data Sharing and Synthesis
	Decentralized Research Data Sharing Management Using Blockchain Technology
	1 Introduction
	2 Background
	2.1 Data Sharing in Research Context
	2.2 Blockchains and Smart Contracts
	2.3 Related Work

	3 Proposed Concept
	3.1 Decentralized Research Data Sharing System Requirements
	3.2 Concept Demonstration Based on Ocean Protocol
	3.3 Proof-of-Concept Implementation

	4 Findings and Discussion
	5 Conclusions
	References

	Experiversum: An Environment for Curating Data-Driven Experimental Sciences
	1 Introduction
	2 Related Works
	3 Modeling Data-Driven Experiments
	4 Experiversum Environment
	5 Use Case-Based Validation
	6 Conclusion and Future Work
	References

	Extension of Data Catalog Vocabulary for Federating Open Datasets in Data Spaces
	1 Introduction
	2 Related Work
	3 DCAT Extension for Content-Level Metadata
	3.1 Core DCAT Concepts Being Extended
	3.2 CBM Extension for DCAT
	3.3 Mapping DCAT Extension with Data Ecosystem Catalogs

	4 Conclusions and Future Work
	References

	Enhancing SQL Learning Through Generative AI and Student Error Analysis
	1 Introduction
	2 AI-Powered Tutoring Framework
	2.1 Data Collection Module
	2.2 Query Support Module
	2.3 Error Categorization Module
	2.4 Learning Analytics Module
	2.5 Assignment Generation Module

	3 Preliminary Results
	4 Conclusions and Future Work
	References

	GESONGEN: An Interface for Generating and Visualizing Geosocial Networks
	1 Introduction
	2 Synthetic Geosocial Networks
	3 The GESONGEN System
	3.1 Frontend
	3.2 Backend

	4 Demonstration Scenarios
	5 Conclusions
	References

	Entity Resolution and Integration
	Accelerating Entity Resolution Through Vectorized Meta-blocking on GPUs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Blocking
	3.2 Meta-blocking

	4 Experimental Evaluation
	4.1 Experimental Setting
	4.2 Evaluation of Our GPU-Based Implementation Against Standard CPU-Based Implementations

	5 Conclusions and Future Work
	References

	Validating Data Provenance Polynomials
	1 Introduction
	2 Background and Related Work
	3 Validation of Provenance Semirings
	4 Validation of Aggregations
	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

	Data Governance Maturity Models and Practices: A Systematic Literature Review
	1 Introduction
	2 Systematic Literature Review
	3 Results
	3.1 RQ1. Data Governance Maturity in Academia and Industry
	3.2 RQ2. Tools and Practices in Academia and Industry
	3.3 RQ3. Main Principles and Best Emerging Practices
	3.4 Limitations and Future Work

	4 Conclusion
	References

	An Evaluation of Energy Consumption for Deep Learning-Based Privacy Preserving Record Linkage
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Deep Learning-Based Privacy Preserving Entity Resolution
	3.2 Energy Consumption Evaluation
	3.3 Experimental Setup

	4 Experimental Results
	4.1 Feature Generation Energy Consumption
	4.2 Matching Performance
	4.3 Power, Energy, Time and Memory

	5 Conclusions
	References

	Doctoral Consortium School Invited Talks
	Machine Learning for Query Optimization in Knowledge Graphs
	1 Introduction
	2 Preliminaries: Query Optimization over KGs
	3 Query Optimization with Machine Learning
	3.1 Learned Cardinality Estimation
	3.2 Learned Cost Models
	3.3 Learned Plan Enumeration

	4 Building Neuro-symbolic and Neural Query Optimizers
	4.1 Neuro-symbolic Optimizers
	4.2 Neural Optimizers

	5 Challenges and Future Directions
	6 Conclusion
	References

	Vector Databases and Language Models: Synergies and Challenges
	1 Introduction
	2 Background Concepts
	2.1 Vector Embeddings
	2.2 Vector Databases
	2.3 Language Models

	3 Supplementing Retrieval with Vector Databases
	4 Vector Storage and Retrieval
	5 Performance Considerations
	6 Future Research
	7 Conclusion
	References

	Ethical and Equitable Data Science: Bridging Social Justice and Technical Innovation ADBIS 2025 Doctoral Consortium Lecture
	1 Introduction
	2 Related Work
	3 FREDA Methodology: Frugal, Responsible, Equitable Data Algorithm Driven Science
	4 Use Case: Federated, Sovereignty-Aware Analytics of Feminicide Clusters in Mexico
	5 Conclusion and Future Work
	References

	Data Integration for Data Science: Solutions and Still Open Problems
	1 Introduction
	2 Data Integration Architectures
	3 Data Integration Architecture for IoRT
	4 Connectors as a Service Architecture
	5 Trends and Open Problems
	References

	MADEISD 2025: 7th Workshop on Modern Approaches in Data Engineering and Information System Design
	Enhancing Data Interoperability in Multi-platform Lakehouses with Apache Iceberg
	1 Introduction
	2 Background and Related Work
	3 Enabling Cross-Platform Data Interoperability
	3.1 Introduction to Medallion Architecture in Modern Lakehouse Systems
	3.2 Standardizing Data Integration Across Platforms Using Apache Iceberg

	4 Bi-Directional Data Integration Between Snowflake and Databricks
	4.1 Architecture

	5 Experimental Design
	5.1 Integration Feasibility
	5.2 Data Synchronization with Varying Dataset Sizes
	5.3 Schema Evolution Across Platforms
	5.4 Latency and Performance Testing

	6 Results and Discussion
	6.1 Integration Feasibility
	6.2 Data Synchronization with Varying Dataset Sizes
	6.3 Schema Evolution Across Platforms
	6.4 Latency and Performance
	6.5 Challenges and Limitations

	7 Conclusions
	References

	Executable Semantics for Teaching Concatenative Stack-Based DSLs: The Case of StackLang
	1 Introduction
	2 Related Work and Focus Areas
	3 The StackLang DSL
	3.1 Overview of StackLang
	3.2 Syntax of StackLang
	3.3 Formal Semantics of StackLang

	4 Implementing Semantics and Generating Tools
	4.1 SLANG Tool
	4.2 Executable Semantics via SLANG
	4.3 SLANG's Role in Language Processor Generation
	4.4 How StackLang can be Used in Teaching

	5 Conclusion
	References

	Exploring Big Data Maturity Models: Findings from a Systematic Literature Review
	1 Introduction
	2 Related Work
	3 Purpose of the Review
	4 Research Methodology
	4.1 Data Sources and Search Strategy
	4.2 Inclusion and Exclusion Criteria
	4.3 Quality Assessment
	4.4 Data Extraction and Synthesis

	5 Results
	5.1 Category ISI
	5.2 Category BOA
	5.3 Category ACI

	6 Results of Category Big Data
	6.1 Limitations

	7 Discussion
	8 Conclusion
	References

	Improving Data Discovery Effectiveness: Experimental Evaluation of Content-Based Catalogs in Data Spaces
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 Content-Based Metadata
	3.2 Generating Data Samples

	4 Experimental Evaluation
	4.1 Evaluation Dataset
	4.2 Intrinsic Assessment
	4.3 Extrinsic Assessment
	4.4 Indexing Performance

	5 Conclusions and Future Work
	References

	Architecture of Multi-agent System for Automatic Code Template Maintenance
	1 Introduction
	2 Background and Related Work
	2.1 Application of LLMs and MAS in Code Generation
	2.2 Enhancing MDSD with LLMs and MAS

	3 Architecture of MAS4ACTM
	3.1 Documentation Change Detection Module
	3.2 Software Artifact Generation Module
	3.3 Code Validation Module
	3.4 System Improvement Module

	4 Integration of MAS4ACTM into MDSD Solution for Vector Database Access
	5 Discussion
	6 Conclusion
	References

	Sequence Management in the Relational Database System Oracle – Case Study
	1 Introduction
	2 Sequences and Identity Columns
	3 Techniques for Assignment, Getting and Setting Values
	4 Performance Evaluation Study
	5 Discussion
	6 Conclusions
	References

	DOING 2025: 6th Workshop on Intelligent Data - From Data to Knowledge
	From Flows to Graphs: Data-Driven Insights on Latent Overtourism with Frequent Pattern Mining
	1 Introduction
	2 Related Works
	2.1 Graph-Based Techniques for Analyzing Tourism
	2.2 Trajectory Mining
	2.3 Analyzing Overtourism

	3 Methodology
	3.1 Circulation Multidigraph
	3.2 Subgraph Pattern Mining
	3.3 Latent Overtourism Identification

	4 Results and Discussion
	4.1 Dataset Description
	4.2 Latent Overtourism Detection
	4.3 Temporal Analysis of Places Subject to Latent Overtourism

	5 Conclusion and Future Directions
	References

	Using a Model-Agnostic Meta-model as a Flexible Database Migration Tool
	1 Introduction
	2 Related Works
	3 Intermediate Meta-model
	4 Export to Database
	5 Translate a Database Instance
	6 Conclusion
	References

	DGP: Towards A Distributed Graph Programming
	1 Introduction
	2 Preliminaries
	2.1 Graph Morphism
	2.2 Distributed Graph Processing

	3 High-Level Graph Programming
	3.1 Graph Rewriting
	3.2 Distributed Graph Programming

	4 From High-Level to Low-Level
	4.1 Soundness of the Approach
	4.2 Discussions

	5 Related Work
	6 Conclusion and Perspectives
	References

	K-GALS 2025: 4th Workshop on Knowledge Graphs Analysis on a Large Scale
	LLM-Driven Summarization and Distinguish Analysis of Multiple Entities in RDF Graphs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 RDF Data Preparation
	3.2 Prompt Design and Text Generation
	3.3 Evaluation Setup

	4 Results and Evaluation
	4.1 Summary Generation for RDF Entities
	4.2 Summarization Strategy Comparison
	4.3 Distinguish Analysis of Entities
	4.4 Evaluation Outcomes

	5 Conclusion
	References

	Comparing Community Structures in Knowledge Graphs Across Similarity Measures and Clustering Algorithms
	1 Introduction
	2 Methods
	2.1 Defining the Drug Knowledge Graph
	2.2 Drug-to-Drug Distance Measures
	2.3 Quantifying Local Disagreement Between Drug Similarity Metrics
	2.4 Clustering Strategies and Evaluation

	3 Experimental Setting
	4 Results
	4.1 Similarity Measures
	4.2 Local Neighborhood Disagreement (LND) Analysis
	4.3 Drug Community Comparison Across Similarity Measures and Clustering Algorithms
	4.4 Functional Coherence Among Co-occurring Side Effects

	5 Discussion and Future Work
	References

	SapientIAGraph: An Open Knowledge Graph of University Degree Programs at Sapienza
	1 Introduction
	2 Related Work
	3 Case Study: Analysis of Sapienza's Education Offering
	3.1 Data Extraction
	3.2 Graph Modeling

	4 Experimental Analysis
	4.1 Degree Distributions by Node Type
	4.2 Centrality Indices for Monitoring Educational Offering
	4.3 Quantifying Similarity Between Degree Programs

	5 Conclusions
	References

	Identifying Inconsistent Temporal Triples in Temporal Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Proposed Solution

	4 Case Study – Application in YAGO Tiny
	4.1 Evaluation Results

	5 Conclusions and Future Work
	References

	Financial Trading Analytics Knowledge Management
	1 Introduction
	2 Related Work and Research Questions
	3 Proposed Design
	3.1 Knowledge Graph
	3.2 Architecture
	3.3 Analytics Pipeline Building and Execution

	4 Prototype
	4.1 Implementation
	4.2 Demonstration

	5 Conclusion and Future Work
	References

	CAIMA 2025: 1st Workshop on Cooperative AI Models and Applications
	A Parameter-Efficient Approach to Distilling Large Language Models via Meta-learning
	1 Introduction
	2 Related Work
	2.1 Parameter-Efficient Fine-Tuning
	2.2 Knowledge Distillation

	3 Proposed Framework
	4 Experimental Evaluation
	4.1 Classification Performance
	4.2 Accuracy-Sustainability Trade-Off
	4.3 Resilience to Temperature Initialization

	5 Conclusions
	References

	Underrepresentation of Dark Skin Tone in Skin Lesion Datasets: The Role of the Explainable Techniques in Assessing the Bias
	1 Introduction
	2 Related Work
	3 MultiExCAM: An Explainable Framework for Melanoma Classification
	3.1 Explainable Techniques

	4 Understanding and Visualizing the Bias: MultiExCam Experimental Settings
	4.1 Datasets
	4.2 Explainable Results and Discussion

	5 Conclusion
	References

	MaGA-Clif: Defending FL from Combined Poisoning Attacks with Marginal Gain Estimation
	1 Introduction
	2 System Model and Problem Formulation
	2.1 System Model Description
	2.2 Problem Formulation

	3 Algorithm
	3.1 Federated System Architecture
	3.2 Algorithm Description

	4 Results and Discussion
	4.1 Experimental Setting
	4.2 Results
	4.3 Discussion

	5 Conclusion
	References

	ARPaCCino: An Agentic-RAG for Policy as Code Compliance
	1 Introduction
	2 Background
	2.1 Infrastructure as Code
	2.2 Policy as Code
	2.3 AI Agent

	3 ARPaCCino Architecture
	4 Case Study
	4.1 Expected Workflow
	4.2 Running Example

	5 Experimental Results
	5.1 Evaluation Methodology
	5.2 LLM Vs RAG Vs Agentic RAG
	5.3 Model Comparison for the Agentic RAG

	6 Conclusions and Future Work
	References

	ERGA 2025: 1st Workshop on Entity Resolution and Graph Alignment
	Concept Matching in Hierarchical Meta-data: Leveraging Big-Data to Improve the Performances of Matching Strategies
	1 Introduction
	2 Related Work
	3 Structure- and Semantic-Based Matching Algorithms for Meta-data Hierarchies
	3.1 Concept Formalization Through Concept-Vectors

	4 Semantically-Informed Meta-data Structure Alignment
	4.1 Enriching the Semantic Space Through the Discovery of Concept-Keyword Relationships

	5 Experimental Evaluation
	6 Conclusions
	References

	FEHDA 2025: 1st Workshop on Fairness Exploration in Heterogeneous Data and Algorithms
	Using Large Language Models for Ethical Process Modeling: A Case Study
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 The Business Process Model and Notation (BPMN)
	3.2 Supporting Business Process Modeling with LLMs
	3.3 Fairness Issues in Business Process Modeling
	3.4 Ethical Business Process Modeling: Discussion

	4 Conclusion and Future Work
	References

	ReFaRAG: Re-ranking for Bias Mitigation in Retrieval-Augmented Generation
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 The RAG Workflow
	2.3 Bias in LLM and RAG

	3 Measuring Bias in RAG
	3.1 Mitigate Bias

	4 Mitigate Bias Using Re-Ranking in ReFaRAG
	5 Experimental Evaluation
	5.1 Results

	6 Conclusions
	6.1 Limitations and Future Work

	References

	IT4TOCI 2025: 1st Workshop on Information Technology for Tourism and Culture Industries
	Trustworthy Tourism Recommender Systems
	1 Introduction
	2 Trustworthy Recommender Systems
	3 Evaluation of Recommender Systems
	4 Overtourism Mitigation and Sustainability
	5 Conclusions
	References

	A Blockchain-Based Platform for Sharing and Rewarding User-Generated Content
	1 Introduction
	2 Proposed Solution
	3 Implementation and Experiments
	4 Related Work
	5 Conclusion
	References

	Bias Evaluation in Contextual Machine Learning
	1 Introduction
	2 Related Work
	2.1 Bias in Machine Learning
	2.2 Context in Machine Learning

	3 Bias in Contextual Machine Learning
	3.1 Context Definition in Machine Learning
	3.2 Bias Definition in Contextual Machine Learning

	4 Contextual Bias Evaluation
	4.1 Complexity Analysis

	5 Early Findings on PoIs Case Study
	5.1 Dataset
	5.2 The Role of the Context
	5.3 The per-Class Evaluation

	6 Conclusion and Future Work
	References

	RideLink: Enhancing Route Quality for Urban Multimodal Mobility
	1 Introduction
	2 Multimodal Routing Approach
	2.1 Offline Precomputation of the Minimum-Travel-Time Index (MiTTI)
	2.2 Online Selection of Route Candidates
	2.3 Online Estimation of Optimal Journeys

	3 Performance Optimization
	3.1 Quantitative Bottleneck Analysis
	3.2 The Optimized Query Structure

	4 RideLink: A Proof-of-Concept for Enhanced Tourist Mobility
	5 Evaluation
	5.1 Route Quality
	5.2 Performance and Storage Requirements

	6 Related Work
	7 Conclusion and Future Work
	References

	Author Index

