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 A B S T R A C T

Relational database normalization strives to minimize update anomalies and data redundancy, often at the 
cost of performance. Transactional systems typically require a higher degree of normalization since data are 
updated more frequently than in read-intensive decision support systems. While these reasons for and effects 
of normalization can be considered common knowledge, there are hardly any empirical studies on the query 
performance implications of various degrees of normalization in decision support systems. That is, it seems that 
the magnitude of the effects of normalization is not widely understood, even though performance implications 
are of importance to managers and analysts utilizing decision analytics, and for end-user information needs 
to be timely satisfied. In this study, the effects of normalization on a decision support database were tested 
for three popular SQL/relational database servers. The results raise serious concerns about the conventional 
consensus on the performance gains incurred by the reduced number of table joins. Even for small-sized 
databases, the penalties due to the extra volume caused by redundancy associated with lower normal forms 
seem larger than the performance gains due to the reduced number of joins. These results have practical 
implications on which design principles should be followed for efficient decision support system databases.
1. Introduction

Database performance is paramount in decision support systems 
(DSS, often also called online analytical processing, or simply OLAP) 
due to its direct impact on the efficiency and effectiveness of decision-
making processes. Decision support systems rely on timely access to 
large volumes of data for informing strategic decisions [1]. Database 
performance ensures that data retrieval operations are executed
promptly, enabling end-users to analyze data without experiencing 
delays or disruptions. Additionally, optimal database performance facil-
itates the processing of complex analytical queries and the generation 
of real-time or near-real-time reports for addressing dynamic business 
requirements.

Traditionally, relational database design involves trade-offs between 
update anomalies and efficiency [2,3], generally referred to as database 
normalization. Even though the effects of database normalization on 
performance are known in theory, the magnitude of these effects has 
been scarcely studied in DSSs, if at all. Understanding the magnitude 
of the trade-offs in DSS database design benefits various information 
technology industries, as database design decisions are closely tied to 
the amount of hardware needed to store data and serve end-users, as 
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well as how fast the queries of the end-users can be answered. In this 
study, we test the effects of database normalization on a DSS database 
performance and query completion success using the well-established 
TPC-H benchmark deployed on PostgreSQL, MySQL, and Microsoft 
SQL Server database management systems (DBMSs). As normalization 
affects several aspects in the analytics queries, such as the number 
of tables and joins, we also study the effects of query constituents
(i.e., different syntactical and logical elements in the queries) with the 
following research questions (RQ):

RQ 1.1 How does the database’s normal form affect successful query 
completion in a decision support system database?

RQ 1.2 Which constituents of queries explain differences in successful 
query completion in databases adhering to different normal 
forms?

RQ 2.1 How does the database’s normal form affect query performance 
in a decision support system database?

RQ 2.2 Which constituents of queries explain differences in query exe-
cution times in databases adhering to different normal forms?
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Fig. 1. An overview of the general process of relational database normalization through decomposition.
 

The results suggest that the performance gains associated with 
a reduced number of joins required in lower normal forms do not 
compensate for the penalties associated with retrieving data from larger 
tables specific to the lower normal forms. These results have practical 
and theoretical implications in decision support systems, enterprise re-
source planning data warehouses, operation cost planning, and logical 
database design, especially in read-intensive business domains.

The rest of the study is structured as follows. In the next section, we 
describe the theoretical background needed to understand the results 
of the study, namely normalization theory, database management sys-
tems, database performance, and benchmarking. In Section 3, we detail 
the benchmarking environment setup, hardware, and data analysis. 
Section 4 contains the results. In Section 5, we discuss the practical 
implications of the results and threats to validity. Section 6 concludes 
the study.

2. Theoretical background

2.1. Normalization theory

Database normalization theory was proposed along with the rela-
tional model [4,5], and is arguably well understood. Normalization 
through decomposition is an iterative process with formally defined 
steps called normal forms. As a set of guidelines for designing rela-
tional database schema [6,7], normalization is intended to minimize 
data redundancy, which consequently minimizes update anomalies and 
data inconsistencies [3,8]. However, normalization tends to penalize 
database querying, since some data that may have been retrievable 
from one table in a less normalized schema must be retrieved from 
several tables in schemas incorporating higher normal forms [3,8].

Normalization is an iterative relational database design process 
(Fig.  1). Each step in the iterative process is referred to as a normal 
form (NF), where each normal form incorporates more and more strict 
restrictions on the database structure to minimize data redundancy. 
Due to a lack of empirical knowledge, it is not widely understood up to 
which normal form databases should be normalized, but it is commonly 
accepted that the same normal form does not fit all databases [9]. Many 
normal forms rely on the concept of a functional dependency, which is 
a constraint between two sets of columns in a table that describes the 
relationship between the values of those attributes. More formally, in 
a relation (i.e., table) R, a functional dependency between two sets of 
attributes (i.e., columns) X and Y can be denoted as X → Y, where X 
and Y are subsets of the attributes of R. The functional dependency X 
→ Y indicates that for every valid instance of the relation R, if two 
2 
tuples (i.e., rows) have the same value for the attributes in set X, then 
they must also have the same value for the attributes in set Y. In other 
words, the value of Y is functionally dependent on the value of X [5].

Normal forms are often formally defined, yet in layman’s terms, 
first normal form (1NF) forbids multiple values in a table cell, second 
normal form (2NF) requires that the columns in a table are functionally 
dependent on the whole set of columns which values differentiate 
the rows from each other, third normal form (3NF) forbids functional 
dependencies among non-key columns, and Boyce/Codd normal form 
(BCNF) forbids functional dependencies X → Y in cases where X is not 
a set of columns differentiating table rows from each other. Follow-
ing the iterative process, there are other normal forms as well, both 
between [10] and after [11] the aforementioned normal forms. While 
normalization optimizes data modification, denormalization does the 
opposite — it optimizes data retrieval at the expense of data modifi-
cation [12]. Sanders and Shin [13] provided a detailed review of de-
normalization, offering guidelines and a methodology for evaluating its 
effects through relational algebra. They highlighted the role of denor-
malization in enhancing query performance, aligned with application 
needs, yet they cautioned against its indiscriminate use without consid-
ering trade-offs in system performance. In a subsequent study, Shin and 
Sanders [14] explored various denormalization strategies, evaluating 
four prominent approaches across different scenarios, and developed 
a mathematical model for assessing the benefits of each pattern using 
cost–benefit analysis. They concluded that denormalization may offer 
positive effects on database performance – a view that normalization 
theory has supported since its inception.

2.2. Database performance assessment

Database performance is typically measured in throughput (i.e., how
many concurrent clients the DBMS can serve) or in latency (i.e., how 
much time an operation requires). The former metric is typically used 
in transaction processing environments, in which different end-users 
compete for computing resources, and whose operations affect each 
other through, e.g., database locks and latches, and the latter metric 
is used in DSS databases [15]. The execution times of transactions 
in transaction processing are often measured in milliseconds, as the 
end-users are often business customers. In DSSs, the end-users are 
typically data analysts and managers creating insights from data. Their 
information requirements are answered by querying the database using 
statements written in SQL or some other query language. Depending 
on the requirements complexity and the database size, the statement 
execution often takes minutes, hours, or even more.
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Lee [6] proposed a cost/benefit approach to measure the normaliza-
tion effect on database performance with cost factors such as anomalies, 
storage requirements, and join operations in database queries. They 
emphasized the complexity of choosing the appropriate normal forms, 
proposing a systematic approach modeled as a decision tree. They 
hinted towards developing a computerized decision support system 
to enhance this methodology. Bock and Schrage [16] pointed out 
that denormalization requires rigorous system testing to prove the 
effects of denormalized tables on the processing efficiency, and that 
unanticipated ad hoc queries that use secondary data access paths 
may be adversely affected by denormalized table structures. Boscarioli 
et al. [17] explored the impact of normalization up to 3NF for data 
warehouse applications, but compared a normalized relational database 
to a NoSQL database, making the comparison problematic, as different 
data models and DBMS products are designed for different use-cases. 
Such performance comparisons have been questioned, as they are often 
reported inadequately to replicate, and do not consider the trade-
offs of increased performance [15]. In summary, rigorously conducted 
empirical studies on database performance are scarce, and to the best 
of our knowledge, nonexistent in DSS databases.

Despite its age, the TPC-H benchmark [18,19] remains popular in 
decision support system benchmarking [15,20]. The benchmark pro-
poses a real-world-resembling database structure, a set of 22 archetypal 
decision support queries, a module to populate the schema with a 
desired amount of data, and instructions on how to measure the DBMS 
performance. The TPC-H benchmark database consists of eight tables 
with a business domain that stores the product sales in a generic 
company. While there are several transaction processing system bench-
marks such as TPC-C [21], LUBM [22] and YCSB [23], there a fewer 
DSS benchmarks, TPC-H being one of them, along with benchmarks 
such as TPC-DS, CAB [24] and M2Bench [25].

This study uses PostgreSQL, SQL Server and MySQL for benchmark-
ing. PostgreSQL is an open-source object-relational database manage-
ment system (DBMS) especially known for its stability, extensibility, 
and compliance with the SQL Standard [26,27]. PostgreSQL supports 
various indexing methods, including B+-trees and hash indices, offering 
means for efficient data retrieval. The extensibility of PostgreSQL is evi-
dent through the support for user-defined data types, functions, and op-
erators, allowing users to customize their database environment [28]. 
SQL Server, on the other hand, is an enterprise-scale relational DBMS 
tightly connected to Microsoft’s .NET environment. MySQL has been 
the most popular open-source DBMS. In September 2025, DB-Engines 
(https://db-engines.com/en/ranking) ranked MySQL, SQL Server and 
PostgreSQL as the 2nd, the 3rd and the 4th most popular DMBSs.

3. Research method

In this section, we describe the research setting: logical and physical 
database setup, benchmarked queries and variables, and data analysis. 
The research setting is reported in detail in a GitHub repository,1 which 
contains scripts and instructions needed to reproduce the benchmark, 
as well as our raw data results.

3.1. Logical database setup

One crucial aspect for our research setting is to create the same 
database in different normal forms in order to compare them. The 3NF 
database schema (Fig.  2) is provided by the TPC-H benchmark. We 
designed the 2NF schema by denormalizing a copy of the original 3NF 
schema into tables that adhere to 2NF but not to 3NF (Fig.  3). Next, 
we created a copy of the 2NF schema and denormalized its structure 
until it did not adhere to 2NF, but adhered to 1NF (Fig.  4). These three 
schemas form the basis of the performance comparison tests.

1 https://github.com/marinfotache/normal_forms_and_sql_query_performan
ce.
3 
In the 3NF database schema (Fig.  2), tables can be joined within 
three axes originating in table lineitem:

(a) lineitem-partsupp-part which might be called the product 
description axis

(b) lineitem-partsupp-supplier-nation-region which
might be called the product provenance axis

(c) lineitem-orders-customer-nation-region which
might be called the product sales axis

In both 2NF and 1NF schemas, table names suggest the source of the 
data. For example, in the 2NF schema, table lineitem_partsupp_
part is the result of merging three tables from the 3NF schema, namely
lineitem, partsupp, and part. As expected, due to denormaliza-
tion some duplicates occur, such as with l_partkey, ps_partkey
and p_partkey in table lineitem_partsupp_part of the 2NF 
schema. Table names containing underscores also indicate that they 
are merged from two or more tables of the original 3NF schema. In 
1NF the TPC-H database schema contains three tables that correspond 
to the above three join axes.

Moreover, some queries may demand computing resources beyond 
those available in the current system, and they are usually aborted 
by the DBMS. Consequently, in this paper, we used an additional 
performance metric, i.e., query completion, which signals if the query 
was completed within the 30 min timeout or canceled by the DBMS.

The goal of the experiment in this paper was to examine query 
performance on three schema variants of the TPC-H database: 3NF, 
2NF, and 1NF. Each database schema was tested with two database 
sizes, namely 0.1 GB and 1.0 GB of data spread among the tables. 
The dataset sizes are referred to as the scale factors (SF) as per TPC-H 
vocabulary. Overall, the tests were run as follows:

1. Create a schema for the 3NF schema.
2. Create and populate the original 3NF schema using the TPC-H’s
DBGen utility with a scale factor of 0.1 GB.

3. Generate 1000 SQL queries for the original 3NF schema.
4. Set a timeout of 30 min for each query execution. Queries 
exceeding the execution time of 30 min will be considered
aborted due to timeout. Other queries might be canceled since 
they require resources exceeding those available in the physical 
setup described in Section 3.2.

5. Execute the 1000 queries and collect data on query comple-
tion (binary, i.e., completed or canceled) and query duration in 
seconds.

6. Create and populate the 2NF schema; 2NF tables were populated 
by extracting data from the 3NF schema tables.

7. Create logical equivalents of the initial 1000 queries for the 2NF 
schema.

8. Repeat steps 4. and 5. for the 2NF schema.
9. Create and populate the 1NF schema; 1NF tables were populated 
by extracting data from the 3NF schema tables.

10. Create logical equivalents of the initial 1000 queries for the 1NF 
schema.

11. Repeat steps 4. and 5. for the 1NF schema.
12. Delete the 1NF and 2NF schemas along with their data, and 

delete all the data from the 3NF schema. Repeat the steps from 
3. to 11, but using a scale factor of 1.0 GB.

This 12-step scenario was executed for each of the three DBMSs, 
sharing the query sets, with some tweaks related to SQL syntax dif-
ferences. A small number of PostgreSQL queries could not be conve-
niently converted into SQL Server’s SQL dialect. For example, in SQL 
Server, ORDER BY items can appear in the select list only if SELECT 
DISTINCT is specified.
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Fig. 2. The original TPC-H schema, which adheres to 3NF.

Fig. 3. TPC-H database schema in 2NF.
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Fig. 4. TPC-H database schema in 1NF.
3.2. Physical database setup

The tests were run in an OpenStack cloud environment using a 
single-node server. The environment and hardware are detailed in 
Table  1. The physical database structures for all schemas were kept 
unoptimized, except for the indexes associated with the primary keys 
and the foreign keys. That is, as DSSs typically process ad hoc queries 
rather than queries embedded in the host language of the system, the 
physical structures of DSSs often lack supporting data structures such 
as indexes. To simulate the nature of decision support databases, and 
5 
to not impose any advantage to some queries over others, we did not 
create any additional index in any of the schemas.

3.3. Benchmark queries

Although the TPC-H benchmark includes 22 fine-crafted variants 
of DSS queries, using them in this study was not possible, as their 
small number makes them less prone to statistical analysis. Instead, 
we computationally generated 1000 different SQL queries which were 
also typical analytical queries encompassing several tables, filters, tuple 
grouping, sorting, etc. These queries were initially designed for the 
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Fig. 5. One of the 1000 queries run on the 3NF schema (PostgreSQL).
Table 1
Hardware and software used.
 Component Description  
 CPU Xeon-Gold 6240 @ 2.6 GHz (8 vcores) 
 Memory 16 GB DDR4 @ 2933 MHz  
 Disk RAID-5 NL-SAS HDDs (12K IOPS)  
 Environment OpenStack cloud  
 Benchmark TPC-H 3.0.0 with custom queries  
 OS Ubuntu 20.04.3 LTS  
 DBMS 1 PostgreSQL 16.0  
 DBMS 2 SQL Server 2019  
 DBMS 3 MySQL 8.0.42  

3NF schema, yet logical equivalents of the queries were created for 
the 2NF and 1NF schemas. Fig.  5 shows an example query (written 
in PostgreSQL’s SQL dialect) of the initial 1000-query sets used in our 
tests, which will also serve to define the variables used in subsequent 
statistical tests and machine learning models.
6 
The generated queries contain SQL features typical for analytics, 
such as scalar and non-scalar subqueries, GROUP BY, HAVING, and
ORDER BY clauses with SKIP and OFFSET. Queries were generated 
randomly, limiting some parameters to control the query complexity, 
described in more detail in Section 4.

Expressions in the WHERE and HAVING clauses may contain opera-
tors such as BETWEEN, IN and LIKE, as well as classical comparison 
operators. Tuple groups created with the GROUP BY clause are based 
on primitive table attributes or scalar functions such as RTRIM().

The main driver for the query complexity is the number of sub-
queries declared in the FROM clause(s). Each set of subqueries included 
in FROM is called a join path and it retrieves data from any subset 
of tables in join axes (a)–(c) defined in Section 3.1. The query in 
Fig.  5 retrieves data from two join paths using two subqueries which 
materialize in ad hoc tables t1 (line 8) and t2 (line 11) for reference 
in subsequent sections. Table  2 describes the join paths of the query 
in Fig.  5 in all three schemas (1NF, 2NF, 3NF). For t1, even if the 
information may be retrieved from a single 3NF table (nation), in 
2NF the same information must be extracted from a much larger 
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Table 2
Join paths for the three variations of the query shown in Fig.  5.
 Normal form Join path Content of the derived table  
 3NF t1 A single table.  
 3NF t2 Two tables with an inner join.  
 2NF t1 A single table incorporating four 3NF tables. 
 2NF t2 A single table incorporating five 3NF tables.  
 1NF t1 A single table incorporating five 3NF tables.  
 1NF t2 A single table incorporating five 3NF tables.  

table (orders_customer_nation_region), whereas in the 1NF 
schema, the table is even larger (lineitem_orders_customer_
nation_region). In contrast, for t2 a table join is required in the 
3NF schema, but not in the 2NF or 1NF schemas.

The query generator can handle any number of join paths, but 
queries in this paper were limited to three join paths. Within a join 
path, tables may be joined using INNER or RIGHT OUTER joins. When 
two join paths can be joined (using INNER or any type of OUTER joins) 
by two or more tables, the linking table is chosen at random (in Fig. 
5, nation is the linking table). For the query sets in this paper, the 
join paths may be joined only by the primary key of the linking table 
(lines 9 and 12). Subqueries may appear only in the FROM clause (for 
defining derived tables, such as t1 and t2) or the HAVING clause, but 
neither in the WHERE nor in the SELECT clauses.

Each initial 1000-query set was generated for a given database scale 
factor and the query predicates included attribute values specific to that 
scale factor content. Within the initial query, queries are independent 
from one another. When converting the initial queries for execution 
into the 2NF schema, and then into the 3NF schema, all clauses are kept 
unchanged except for the FROM clause. All FROM clauses included in 
the main query and all its subqueries were updated so that the number 
of necessary joins was minimized.

3.4. Variables

Table  3 contains the list of variables used in all subsequent tests 
and machine learning models. Most variables are related to the query 
complexity and result size, i.e., the numbers of filtering predicates for 
tuples (in WHERE) and groups (in HAVING), the numbers of result 
columns and rows, etc.

The remaining variables in Table  3 refer to: the DBMS (dbserver); 
the database size (scale_factor); the normal form of the database 
(normal_form); a binary variable (query_completion) with two 
values, canceled if the query could not be completed within the 30-
min timeout, and completed when the execution was successful; and the 
execution time in seconds of the completed queries (duration_sec). 
As Section 4 will show, due to the skewness of its distribution, in the 
ML scoring models variable duration_sec was transformed using 
the log10 function.

Variables of interest such as the number of joins in the main FROM
clause or the size of the processed tables were not included in the 
analysis since they are largely correlated with the normal form and the 
database size.

3.5. Data analysis

RQs 1.1 and 2.1 (i.e., the association between normalization and 
query completion and duration) were answered with statistical tests, 
while RQs 1.2 and 2.2 (i.e., the importance of different query con-
stituents in different normal forms for query completion and duration) 
were assessed with machine learning models. An alpha level of 𝛼 = .05 
was selected for all statistical tests.

For RQ 1.1, the statistical significance of the association between 
query completing successfully (i.e., within the 1,800 s timeout; a binary 
outcome) and the database normal form was assessed with Cochran’s 
7 
Q test, which is an extension of McNemar’s test [29,30] for paired 
data. The null hypothesis assumes equal proportions for query comple-
tion success across all normal forms, while the alternative hypothesis 
suggests that at least one normal form differs.

For RQ 1.2, a series of machine learning models were built and 
tuned to predict the successful completion of the query within the 
30 min timeout. The outcome variable, query_completion, is bi-
nary (canceled vs. completed). Predictors were all variables in Table 
3 except for the query duration (duration_sec). The classification 
models were built using two of the most popular algorithms, ran-
dom forest (RF) and extreme gradient boosting (XGBoost). Growing 
ensembles of classification or regression trees [31,32], RF [33] and 
XGBoost [34,35] have recorded good performance in both classification 
and regression problems [36]. Whereas RF performs better in variance 
reduction, XGBoost is better in bias reduction [37].

The importance of normal form among other predictors of query 
completion and the patterns of relationships between main predictors 
and the outcome were examined with techniques related to Inter-
pretable Machine Learning [38–40]. Permutation-based variable im-
portance methods measure how much the model performance changes 
when the effect of a selected predictor is removed through perturba-
tions, i.e., permutations of the predictor’s values [40]. The shape of the 
relationships between model predictors and the outcome was examined 
using techniques such as Partial Dependency Plots, and Accumulated 
Local Effects [38,40,41].

For RQ 2.1, the association between the normal form and the du-
ration of the completed queries was assessed with Friedman’s test [29] 
which is a non-parametric alternative to the one-way repeated mea-
sures ANOVA test. It estimates the statistical significance of differences 
between the distributions of three or more paired groups when the 
distribution of the outcome variable is not normal. In our case, the 
null hypothesis of Friedman’s test assumes there are no significant 
differences in query duration among the three normal forms.

For RQ 2.2, another series of machine learning models were built 
and refined to predict the duration of completed queries. The initial 
outcome variable was query duration in seconds, but since it was 
highly skewed, it was transformed with the log10 function, i.e., with 
common logarithm. The models were built using the same algorithms 
as in RQ 1.2, i.e., RF and XGBoost. The predictor’s importance and 
the shape of the association between predictors and the outcome were 
examined using the same Interpretable Machine Learning techniques as 
for the classification models.

Similar to other machine learning algorithms, random forest and 
XGBoost have hyperparameters that cannot be learned directly from 
the data, but they need to be optimized [42]. In this paper, two 
RF hyperparameters were tuned in both classification and regression 
models: (1) the number of random attributes used at each node split 
(mtry), and (2) the minimum number of observations in a node as 
a requirement for further splitting (min_n). The number of tree pa-
rameters was fixed at 700 in all the RF models. Five hyper-parameters 
were tuned in XGBoost models: (1) the learning rate (learn_rate), 
(2) the minimum reduction in the loss function for proceeding to a 
further split (loss_reduction), (3) the maximum depth of the tree 
(tree_depth), (4) the size of the random samples (sample_size), 
(5) min_n, and (6) mtry. The later two hyperparameters are the same 
as in the RF models. The number of trees was fixed for all XGBoost 
models to 1000.

Random grid search was the preferred method used to find the 
best combination of hyperparameters [43]. Grids included 100 com-
binations of tuned hyperparameters in the RF-trained models and 300 
combinations of tuned hyperparameters in the XGBoost-trained mod-
els. The performance of the classification models was assessed using 
the receiver operating characteristic area under the curve (ROC-AUC) 
metric [44]. The performance of scoring models was assessed with the 
root mean square error (RMSE) metric, but also the coefficient of de-
termination (R2) was used to compare the models [44] since it is easier 
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Table 3
Variable names used in the analyses, and their descriptions.
 Variable Description  
 SELECT_cols No. of columns in the result table  
 SELECT_non_aggr_func No. of all non-aggregate functions appearing in the main SELECT clause 
 SELECT_SUBSTR No. of SUBSTR functions in the main SELECT clause  
 SELECT_date_func No. of date functions in the main SELECT clause  
 SELECT_aggr_func No. of aggregate functions in the main SELECT clause  
 FROM_join_paths No. of join paths in the main FROM clause  
 WHERE_predicates No. of predicates in the WHERE clause  
 WHERE_pkey_attribs No. of primary key attributes in WHERE clauses  
 WHERE__between No. of BETWEEN operators in WHERE clauses  
 WHERE__in No. of IN operators in WHERE clauses  
 WHERE__like No. of LIKE operators in WHERE clauses  
 WHERE_non_aggr_func No. of non-aggregate functions in the main WHERE clauses  
 WHERE_func__date No. of date functions in the main WHERE clause  
 GROUP_BY_cols No. of GROUP BY columns  
 HAVING_non_scalar_subq No. of non-scalar subqueries in the HAVING clause  
 HAVING_scalar_subq No. of scalar subqueries in the HAVING clause  
 ORDER_BY_cols No. of ORDER BY columns  
 limit No. of rows in the result table  
 offset No. of rows skipped in the result table  
 dbserver mssqlserver or postgresql  
 scale_factor Database size (0.1 GB or 1.0 GB)  
 normal_form Database normal form (1NF, 2NF or 3NF)  
 query_completion Whether the query execution was completed during the 30 min timeout  
 duration_sec Query execution times (in seconds) for each completed query  
to interpret. To reduce overfitting, repeated (five times) five-fold cross-
validation of the training set was combined with random grid search for 
hyperparameter tuning [44]. Initial datasets were split into the training 
and testing subsets, with a split ratio of 75/25. The stratified split for 
the classification models enforced the same distribution of the binary 
outcome in both the training and the testing subsets.

All exploratory data analysis, statistical tests, and machine learning 
modeling were performed in R [45]. The tidyverse ecosystem of 
R packages [46] served as the main tool for data preparation and 
exploratory data analysis. Most charts were generated by the ggplot2
package, which is part of the tidyverse, with support from other 
packages, such as ggforce [47] and corrplot [48]. Cochran’s Q 
test and the pairwise comparisons for RQ1.1 were performed with the 
package rstatix [49]. Package ggstatsplot [50] was utilized for 
the Friedman’s test (RQ2.1).

The tidymodels ecosystem of packages [51] was employed for 
model building and tuning. The RF models were fitted with the ranger
engine [52], whereas the engine used for building the XGBoost models 
was xgboost [53]. All the Interpretable Machine Learning tech-
niques (Variable Importance, Partial Dependency Profiles, Individual 
Conditional Expectation, and Accumulated Local Effects Profiles) were 
deployed using the DALEX ecosystem [54,55].

4. Results

All data analysis techniques described in Section 3.5 were applied 
separately for PostgreSQL, SQL Server, and MySQL. In this paper, we 
were not concerned with the performance comparison between DBMSs, 
but whether the normalization results are consistent across DBMSs. 
Of the initial set of 1000 queries generated for each scale factor in 
PostgreSQL, only 983 could be adapted to perform identical tasks in 
SQL Server due to differences in SQL dialects. All of 1000 queries were 
adapted with minor adjustments to run in MySQL.

4.1. Higher normal form facilitates queries completing successfully

For RQ 1.1, the completion of queries in all DBMSs among scale 
factors and normal forms is summarized in Fig.  6. For all DBMSs and 
scale factors, the figure suggests that increasing the normal form is 
associated with better chances of query successful completion (within 
the 30 min timeout). For the tiny scale factor of 0.1 GB, in SQL Server 
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the percentage of successful queries increased from 74% (1NF), to 77% 
(2NF), and to 89% (3NF). The trend was similar in MySQL: 70% (1NF), 
71% (2NF), and 88% (3NF) and PostgreSQL: 72% (1NF), 75% (2NF), 
and 90% (3NF).

By increasing the scale factor to 1 GB, the percentages of successful 
queries decreased for all normal forms and DBMSs, since the queries 
processed larger amounts of data which requires longer execution times 
(sometimes over the 30 min timeout), or more computing resources 
than those provided by the current system. Nevertheless, among normal 
forms, the success rate increased from 60% (1NF), to 62% (2NF), and 
to 78% (3NF) in SQL Server, from 59% (1NF), to 60% (2NF), and to 
78% (3NF) in MySQL, and from 56% (1NF), to 59% (2NF) and to 81% 
(3NF) in PostgreSQL. Migrating the database from 2FN to 3NF appeared 
particularly important for query completion.

Cochran’s Q test determined that, for all DBMSs, there was a sta-
tistically significant difference in the proportion of successful queries 
among the normal forms: 𝜒2(2) = 477, p < .001 for SQL Server, 𝜒2(2) 
= 540, p < .001 for MySQL, and 𝜒2(2) = 679, p < .001 for PostgreSQL. 
There is enough statistical evidence to state that the normal form is 
associated with successful query completion, for both scale factors, 
given the 30-min timeout set for the query completion. In all three 
DBMSs, all pairwise comparisons (i.e., 1NF-2NF, 1NF-3NF, and 2NF-
3NF) were statistically significant (p < .001), except for the 1NF-2NF 
pair in MySQL.

4.2. Normal form is ranked as the second most important predictor for 
queries completing successfully

For RQ 1.2, the importance of the query constituents resulting from 
database normalization in query completion was assessed with a series 
of machine learning classification models using two popular algorithms, 
random forest (RF), and extreme gradient boosting (XGBoost), as de-
scribed in Section 3.5. We fitted and refined separate models for each 
database server, to check if the results of (de)normalization are similar.

The best models for RF and XGBoost were selected among 5 cross-
validation folds based on their performance, as assessed with the 
ROC-AUC metric. For all three DBMSs, the best RF performance was 
recorded for models with three randomly selected features at each split 
(mtry) and four minimum observations required to split a node further 
(min_n). SQL Server and PostgreSQL shared the best combination 
of hyperparameters for the XGBoost classification models: 9 features 
at each split (mtry); 11 minimum observations required to split a 
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Fig. 6. Query completion among DBMSs, scale factors, and normal forms.
node further (min_n); maximum 10 levels of depth for each tree 
in the boosting ensemble (tree_depth); a learning rate of 0.086 
(learn_rate); a minimum amount of loss reduction required to make 
a further partition on a leaf node of 0.00000423 (loss_reduction); 
a sample size of 0.928 (sample_size). For MySQL, the best av-
erage ROC-AUC across the cross-validation folds was recorded for
mtry = 19, min_n = 8, tree_depth = 13, learn_rate = 0.067,
loss_reduction = 1.55, and sample_size = 0.866.

All selected models seem reliable since they recorded very good 
performance on new data, i.e., the test set, with RF models slightly 
outperforming their XGB counterparts. The ROC-AUC for the selected 
RF models was 0.945 for SQL Server, 0.947 for MySQL and 0.943 
for PostgreSQL, whereas the selected XGBoost models recorded the 
ROC-AUC of 0.933 for SQL Server, 0.930 for MySQL and 0.935 for 
PostgreSQL. Also, in terms of accuracy, the RF final models performed 
better than the XGBoost selected models: 0.902 vs. 0.883 for SQL 
Server, 0.891 vs. 0.870 for MySQL, and 0.885 vs. 0.881 for PostgreSQL.

The results in Fig.  7 show that, for all three DBMSs, the number 
of join paths (FROM_join_paths) is the most important predictor 
for queries completing successfully, followed by the normal form. The 
importance of the remaining predictors is notably smaller. This was sur-
prising, especially for the scale factor, since we expected the database 
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size to play a greater role in the query completion. Admittedly, the 
variation of the database size was small, since the tests covered only 
the 0.1 GB and 1.0 GB scale factors. The variable importance plots 
were drawn only for the selected RF models since they outperformed 
XGBoost models.

For the four most important predictors (as ranked by the selected 
RF classification models) associated with the probability of a query 
being completed, Fig.  8 presents two popular plots for the model-level 
interpretation, i.e., Partial Dependency Profiles (PDP) and Accumulated 
Local Effects (ALE) Profiles. They complement each other and, when 
converging, the results are more reliable. Each of the profiles shows 
how an increase in the predictor’s value (displayed on the x-axis) is 
associated with an increase or decrease in the probability (displayed 
on the y-axis) of the query being completed. The shape of the plots is 
similar for all four predictors and three DBMSs.

Increasing the number of join paths (from 1 to 2, and then to 
3) is associated with a steep probability decrease in the query being 
completed within the 30 min timeout. By contrast, when increasing 
the normal form, the probability increases; the probability increase is 
steeper when moving from 2NF to 3NF than when the database normal 
form increases from 1NF to 2NF. Increasing the database size from 
0.1 GB to 1.0 GB decreases the odds that the query would be completed, 
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Fig. 7. Ten most important predictors for queries completing successfully in the random forest classification models.
Fig. 8. Feature effects of the selected random forest classification model for the most important four predictors of successful query execution; probability of 
execution to be successful is on the 𝑦 axis; green lines represent partial dependency profiles and blue lines represent accumulated local effects profiles. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
but the decrease is smaller than in the case of the number of join paths. 
Finally, Fig.  8 suggests that a larger number of predicates included in 
the main WHERE clause (this number varied between 0 and 9) slightly 
decreased the odds of the query being completed.

4.3. Higher normal form facilitates faster query execution time

For analyzing RQ 2.1, we removed queries that were not completed 
in all three normal forms and all DBMSs. This resulted, for each DBMS, 
in 598 queries for the scale factor of 0.1 GB and 436 queries for the 
scale factor of 1.0 GB. The statistical significance of the association 
between query duration and database normal form was assessed with 
Friedman’s test, as duration was not normally distributed.

Results in Fig.  9, as provided by the ggstatsplot package, 
revealed statistically significant relationships between the normal and 
the query duration for all servers when the queries of both scale factors 
were tested together: 𝜒2(2) = 635, p < .001 for SQL Server, 𝜒2(2) =
254, p < .001 for MySQL, and 𝜒2(2) = 559, p < .001 for PostgreSQL. 
The effect size, as measured by Kendall’s W, was found to be 0.31 
(CI95% [0.28, 1.00]) for SQL Server, 0.12 (CI95% [0.10, 1.00]) for 
MySQL, and 0.27 (CI95% [0.23, 1.00]) for PostgreSQL. For a TPC-H 
database size under 1 GB, the intensity of the relationship between 
query duration and the database normal form seems to be moderate 
in SQL Server and PostgreSQL, but weaker in MySQL.

Durbin-Conover-corrected pairwise comparisons were conducted as
post hoc tests, revealing that, for each DBMS, all pairwise compar-
isons between the normal forms in both scale factors were statistically 
significant (p < .001).
10 
4.4. Normal form is ranked as the most important predictor for query 
execution time

As with RQ 2.1, for RQ 2.2 we removed queries that were not 
completed in any of the three database schemas. For each of the three 
DBMSS, a series of scoring models (based also on RF and XGBoost) were 
built and tuned to predict log10 of query duration (we opted to trans-
form duration with the logarithm because of its skewed distribution) 
in relation to all variables in Table  3 except for query_comple-
tion. The best RF and XGBoost models were identified by tuning 
the same hyper-parameters as in the classification models, selecting 
at random (by the method of random search) 100 combinations of 
hyper-parameters for the RF models and 300 combinations for the XGB 
models; model performance was assessed across five cross-validation 
folds with the root mean square error (RMSE) metric.

For both SQL Server and MySQL, the lowest RMSE in RF models 
was recorded for mtry = 9 and min_n = 4 (for the full names of 
hyper-parameters, see the classification models in Section 4.2). For 
PostgreSQL, the best RF models had mtry = 4 and min_n = 5.

In the XGBoost models, all three DBMSs shared the best combi-
nations of hyper-parameters: mtry = 4, min_n = 5, tree_depth
= 6, learn_rate = 0.0309, loss_reduction = 2.00e−10, and
sample_size = 0.944.

While RMSE was the metric used to identify the best model, the 
coefficient of determination (R2) is easier to interpret, as a percentage 
of the outcome variability explained by the model. On the test set, the 
selected XGBoost models recorded RMSE = 0.625 and R2 = 0.701 for 
SQL Server, RMSE = 0.700 and R2 = 0.674 for MySQL, and RMSE 
= 0.701 and R2 = 0.654) for PostgreSQL, outperforming their RF 
counterparts, where RMSE = 0.701 and R2 = 0.635 for SQL Server, 
RMSE = 0.725 and R2 = 0.658 for MySQL, and RMSE = 0.739 and R2
= 0.636) for PostgreSQL.



M. Fotache et al. Information Systems 136 (2026) 102636 
Fig. 9. Association between the query duration and the database normal form (both scale factors).
Fig. 10. Ten most important predictors for query execution time in the best (selected) XGBoost scoring models.
Since XGBoost models recorded better performances for all three 
servers, subsequent analyses do not consider the RF models, even if 
their results largely converge (e.g., in ranking the normal form as the 
most important predictor). As Fig.  10 shows, XGBoost found the normal 
form as the most important predictor for explaining the variability 
of query duration in all three DBMSs. As for the other predictors’ 
importance, there are considerable differences that could be explained 
by the server’s query engine features.

Fig.  11 shows the Partial Dependency Profiles and the Accumulated 
Local Effects Profiles of the two most important predictors (as assessed 
by the XGBoost models) associated with the log10 of the query duration 
for all three DBMSs. Interpretation is similar to Fig.  8, but here, on the 
𝑦-axis, the predicted value of the outcome (log10 of the query duration) 
is represented.
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The shape of PDP and ALE profiles is similar for each of the four 
predictors on all servers. When increasing the normal form of the 
database, the duration of the query decreases; the effect is greater when 
moving the database schema from 2NF to 3NF.

5. Discussion

5.1. Practical implications

The key findings of this study were: (i) higher normal forms (2NF, 
3NF) improve the likelihood of queries completing successfully within 
a 30 minute timeout, (ii) the number of join paths is the top predictor 
for successful query completion, followed by database normal form, 
and (iii) higher normal forms facilitate faster query execution times, 
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Fig. 11. Feature effects of the selected XGBoost scoring model for the two most important predictors of query duration.
with significant differences across the three tested normal forms. Addi-
tionally, both random forest and XGBoost models were shown reliable 
in this study, with XGBoost showing slightly better performance in 
predicting query execution times. Also, results were consistent among 
the chosen database servers.

The results suggest that higher normal forms can significantly re-
duce execution times. This can be applied in DSS database design 
towards more efficient data retrieval and processing, which is arguably 
important for industries relying on large-scale databases. Additionally, 
by reducing query execution times and increasing query completion 
success, operational costs related to database management can be 
lowered without investing more in hardware.

The effects of database normalization should not be considered 
in isolation, i.e., not only in regards to query completion and query 
execution time. As normalization is about reducing data redundancy as 
well as update anomalies, it generally was expected that stricter normal 
forms decrease the database size. In the case of the TPC-H database, for 
the scale factor of 1.0 GB, the size of the dataset in the 2NF schema is 
75% of the 1NF database, whereas the size of the dataset in the 3NF 
schema is only 15% of the 2NF database. This highlights the magnitude 
of the effects of normalization on database size, as all three databases 
contain the same data.

These results have practical applications in computing education. 
The results arguably show the importance of teaching database nor-
malization and its practical benefits, especially for DSS databases. 
Educators can design exercises that allow students to experience first-
hand the performance improvements associated with higher normal 
forms, reinforcing theoretical concepts with practical application.

This study provides a relatively transparently-reported performance 
comparison with a purposefully limited scope for evaluating the impact 
of database normalization on query performance and query completion 
success. This can serve as a benchmark for future research in the 
field. The machine learning models suggested that the number of join 
paths and normalization level were the most important predictors for 
query execution times and successful query completion. Researchers 
can build on these findings to explore other factors influencing database 
efficiency in different business domains, with benchmarks other than 
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TPC-H, and with different database architectures and configurations, 
using the provided methodology and findings as a baseline.

Previous studies have generally supported the notion that higher 
normal forms improve data integrity and reduce redundancy. However, 
the specific impact on query performance has been less frequently 
quantified. This study provides concrete metrics (e.g., query comple-
tion rates, execution times) that extend earlier findings. Furthermore, 
the use of machine learning models to predict query performance 
is, to the best of our knowledge, a relatively novel approach. The 
incorporation of random forest and XGBoost models offers a new 
perspective and demonstrates the applicability of these methods in 
database performance research.

5.2. Limitations and threats to validity

There are several limitations to our study. Except for the primary 
keys and foreign keys indexes, none of the databases were optimized 
in terms of physical or logical database structures, nor were SQL Server, 
MySQL, and PostgreSQL, or TPC-H, configured besides their default 
configurations. While none of these choices arguably reflect real-world 
DSS scenarios, many decision support system queries (as opposed to 
transactional systems) do not rely on physical or logical structure 
optimizations, as they are often ad hoc queries. However, the aim of 
the study was not DBMS-DBMS performance comparison.

The timeout of 30 min (i.e., 1800 s) used in this study is arbitrary. 
Arguably, data analysis reports which take longer than 30 min are 
acceptable. However, we expect that the chosen scale factors mitigate 
this, as the datasets used in this study are relatively small when 
compared to enterprise data warehouses.

One limitation in scope is that this study focuses on the business do-
main of warehouses, uses merely data retrieval statements, and merely 
one, although relatively large, set of queries. Therefore, it is unclear 
how extensively the results of this study generalize to other domains 
or queries. Additionally, without similar prior studies, it is challenging 
to compare our results to what others have observed, which in turn 
calls for similar future studies with different settings to understand the 
effects of normalization in wider contexts.
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6. Conclusion

Decision support systems are important tools in modern business 
environments, providing support for decision-making processes across 
various industries. These systems integrate data with sophisticated 
analytical models to facilitate informed and timely decisions. The sig-
nificance of DSS lies in their ability to enhance the quality and speed 
of decision-making. As decision support systems often handle large 
amounts of data, generating insights from this data through querying 
is understandably computationally slow. Despite the importance of 
decision support systems in general, as well as the need for timely 
insights, scientific research concerning the DSS performance has been 
relatively scarce. In this study, we analyzed how logical database design 
through normalization affects long-running queries completing success-
fully and query execution time. Rather unintuitively, higher normal 
forms showed both better query completion success as well as query 
execution times, explained by several predictors in the queries such as 
the paths used to join tables, database size, and which predicates the 
queries contained. These results have practical applications in logical 
design of DSS databases, as the results imply that not only higher 
normal forms eliminate data redundancy, they also speed up queries 
and facilitate higher query completion success in long-running queries.
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