Information Systems 136 (2026) 102636

Contents lists available at ScienceDirect
Information
svslegn:
Information Systems e
journal homepage: www.elsevier.com/locate/is e

The effects of database normalization on decision support system

performance

Marin Fotache ?, Marius-Iulian Cluci ", Toni Taipalus ‘?>*, George Talaba *

a Department of Business Information Systems, Alexandru Ioan Cuza University of Iasi, Romania

b HVM SRL Iasi, Romania

¢ Faculty of Information Technology and Communication Sciences, Tampere University, Finland

ARTICLE INFO

Keywords:

Database

Performance

Decision support system
Normalization

TPC-H benchmark

ABSTRACT

Relational database normalization strives to minimize update anomalies and data redundancy, often at the
cost of performance. Transactional systems typically require a higher degree of normalization since data are
updated more frequently than in read-intensive decision support systems. While these reasons for and effects
of normalization can be considered common knowledge, there are hardly any empirical studies on the query
performance implications of various degrees of normalization in decision support systems. That is, it seems that
the magnitude of the effects of normalization is not widely understood, even though performance implications
are of importance to managers and analysts utilizing decision analytics, and for end-user information needs
to be timely satisfied. In this study, the effects of normalization on a decision support database were tested
for three popular SQL/relational database servers. The results raise serious concerns about the conventional
consensus on the performance gains incurred by the reduced number of table joins. Even for small-sized
databases, the penalties due to the extra volume caused by redundancy associated with lower normal forms
seem larger than the performance gains due to the reduced number of joins. These results have practical
implications on which design principles should be followed for efficient decision support system databases.

1. Introduction

Database performance is paramount in decision support systems
(DSS, often also called online analytical processing, or simply OLAP)
due to its direct impact on the efficiency and effectiveness of decision-
making processes. Decision support systems rely on timely access to
large volumes of data for informing strategic decisions [1]. Database
performance ensures that data retrieval operations are executed
promptly, enabling end-users to analyze data without experiencing
delays or disruptions. Additionally, optimal database performance facil-
itates the processing of complex analytical queries and the generation
of real-time or near-real-time reports for addressing dynamic business
requirements.

Traditionally, relational database design involves trade-offs between
update anomalies and efficiency [2,3], generally referred to as database
normalization. Even though the effects of database normalization on
performance are known in theory, the magnitude of these effects has
been scarcely studied in DSSs, if at all. Understanding the magnitude
of the trade-offs in DSS database design benefits various information
technology industries, as database design decisions are closely tied to
the amount of hardware needed to store data and serve end-users, as

* Corresponding author.
E-mail address: toni.taipalus@tuni.fi (T. Taipalus).

https://doi.org/10.1016/j.is.2025.102636

well as how fast the queries of the end-users can be answered. In this
study, we test the effects of database normalization on a DSS database
performance and query completion success using the well-established
TPC-H benchmark deployed on PostgreSQL, MySQL, and Microsoft
SQL Server database management systems (DBMSs). As normalization
affects several aspects in the analytics queries, such as the number
of tables and joins, we also study the effects of query constituents
(i.e., different syntactical and logical elements in the queries) with the
following research questions (RQ):

RQ 1.1 How does the database’s normal form affect successful query
completion in a decision support system database?

RQ 1.2 Which constituents of queries explain differences in successful
query completion in databases adhering to different normal
forms?

RQ 2.1 How does the database’s normal form affect query performance
in a decision support system database?

RQ 2.2 Which constituents of queries explain differences in query exe-
cution times in databases adhering to different normal forms?

Received 12 June 2024; Received in revised form 5 October 2025; Accepted 13 October 2025
0306-4379/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/is
https://www.elsevier.com/locate/is
https://orcid.org/0000-0003-4060-3431
mailto:toni.taipalus@tuni.fi
https://doi.org/10.1016/j.is.2025.102636
https://doi.org/10.1016/j.is.2025.102636
http://creativecommons.org/licenses/by/4.0/

M. Fotache et al.

Information Systems 136 (2026) 102636

Start Select the
criteria of 1NF
Select th
e-ect The Pick a table for
criteria of > . .
consideration
the next NF
table
adheres
no to NF GEEve— Divide the table
target NF tables left | Y€S
reached to consider
Sto
i yes no yes

Fig. 1. An overview of the general process of relational database normalization through decomposition.

The results suggest that the performance gains associated with
a reduced number of joins required in lower normal forms do not
compensate for the penalties associated with retrieving data from larger
tables specific to the lower normal forms. These results have practical
and theoretical implications in decision support systems, enterprise re-
source planning data warehouses, operation cost planning, and logical
database design, especially in read-intensive business domains.

The rest of the study is structured as follows. In the next section, we
describe the theoretical background needed to understand the results
of the study, namely normalization theory, database management sys-
tems, database performance, and benchmarking. In Section 3, we detail
the benchmarking environment setup, hardware, and data analysis.
Section 4 contains the results. In Section 5, we discuss the practical
implications of the results and threats to validity. Section 6 concludes
the study.

2. Theoretical background
2.1. Normalization theory

Database normalization theory was proposed along with the rela-
tional model [4,5], and is arguably well understood. Normalization
through decomposition is an iterative process with formally defined
steps called normal forms. As a set of guidelines for designing rela-
tional database schema [6,7], normalization is intended to minimize
data redundancy, which consequently minimizes update anomalies and
data inconsistencies [3,8]. However, normalization tends to penalize
database querying, since some data that may have been retrievable
from one table in a less normalized schema must be retrieved from
several tables in schemas incorporating higher normal forms [3,8].

Normalization is an iterative relational database design process
(Fig. 1). Each step in the iterative process is referred to as a normal
form (NF), where each normal form incorporates more and more strict
restrictions on the database structure to minimize data redundancy.
Due to a lack of empirical knowledge, it is not widely understood up to
which normal form databases should be normalized, but it is commonly
accepted that the same normal form does not fit all databases [9]. Many
normal forms rely on the concept of a functional dependency, which is
a constraint between two sets of columns in a table that describes the
relationship between the values of those attributes. More formally, in
a relation (i.e., table) R, a functional dependency between two sets of
attributes (i.e., columns) X and Y can be denoted as X — Y, where X
and Y are subsets of the attributes of R. The functional dependency X
— Y indicates that for every valid instance of the relation R, if two

tuples (i.e., rows) have the same value for the attributes in set X, then
they must also have the same value for the attributes in set Y. In other
words, the value of Y is functionally dependent on the value of X [5].

Normal forms are often formally defined, yet in layman’s terms,
first normal form (1NF) forbids multiple values in a table cell, second
normal form (2NF) requires that the columns in a table are functionally
dependent on the whole set of columns which values differentiate
the rows from each other, third normal form (3NF) forbids functional
dependencies among non-key columns, and Boyce/Codd normal form
(BCNF) forbids functional dependencies X — Y in cases where X is not
a set of columns differentiating table rows from each other. Follow-
ing the iterative process, there are other normal forms as well, both
between [10] and after [11] the aforementioned normal forms. While
normalization optimizes data modification, denormalization does the
opposite — it optimizes data retrieval at the expense of data modifi-
cation [12]. Sanders and Shin [13] provided a detailed review of de-
normalization, offering guidelines and a methodology for evaluating its
effects through relational algebra. They highlighted the role of denor-
malization in enhancing query performance, aligned with application
needs, yet they cautioned against its indiscriminate use without consid-
ering trade-offs in system performance. In a subsequent study, Shin and
Sanders [14] explored various denormalization strategies, evaluating
four prominent approaches across different scenarios, and developed
a mathematical model for assessing the benefits of each pattern using
cost-benefit analysis. They concluded that denormalization may offer
positive effects on database performance — a view that normalization
theory has supported since its inception.

2.2. Database performance assessment

Database performance is typically measured in throughput (i.e., how
many concurrent clients the DBMS can serve) or in latency (i.e., how
much time an operation requires). The former metric is typically used
in transaction processing environments, in which different end-users
compete for computing resources, and whose operations affect each
other through, e.g., database locks and latches, and the latter metric
is used in DSS databases [15]. The execution times of transactions
in transaction processing are often measured in milliseconds, as the
end-users are often business customers. In DSSs, the end-users are
typically data analysts and managers creating insights from data. Their
information requirements are answered by querying the database using
statements written in SQL or some other query language. Depending
on the requirements complexity and the database size, the statement
execution often takes minutes, hours, or even more.

M. Fotache et al.

Lee [6] proposed a cost/benefit approach to measure the normaliza-
tion effect on database performance with cost factors such as anomalies,
storage requirements, and join operations in database queries. They
emphasized the complexity of choosing the appropriate normal forms,
proposing a systematic approach modeled as a decision tree. They
hinted towards developing a computerized decision support system
to enhance this methodology. Bock and Schrage [16] pointed out
that denormalization requires rigorous system testing to prove the
effects of denormalized tables on the processing efficiency, and that
unanticipated ad hoc queries that use secondary data access paths
may be adversely affected by denormalized table structures. Boscarioli
et al. [17] explored the impact of normalization up to 3NF for data
warehouse applications, but compared a normalized relational database
to a NoSQL database, making the comparison problematic, as different
data models and DBMS products are designed for different use-cases.
Such performance comparisons have been questioned, as they are often
reported inadequately to replicate, and do not consider the trade-
offs of increased performance [15]. In summary, rigorously conducted
empirical studies on database performance are scarce, and to the best
of our knowledge, nonexistent in DSS databases.

Despite its age, the TPC-H benchmark [18,19] remains popular in
decision support system benchmarking [15,20]. The benchmark pro-
poses a real-world-resembling database structure, a set of 22 archetypal
decision support queries, a module to populate the schema with a
desired amount of data, and instructions on how to measure the DBMS
performance. The TPC-H benchmark database consists of eight tables
with a business domain that stores the product sales in a generic
company. While there are several transaction processing system bench-
marks such as TPC-C [21], LUBM [22] and YCSB [23], there a fewer
DSS benchmarks, TPC-H being one of them, along with benchmarks
such as TPC-DS, CAB [24] and M2Bench [25].

This study uses PostgreSQL, SQL Server and MySQL for benchmark-
ing. PostgreSQL is an open-source object-relational database manage-
ment system (DBMS) especially known for its stability, extensibility,
and compliance with the SQL Standard [26,27]. PostgreSQL supports
various indexing methods, including B*-trees and hash indices, offering
means for efficient data retrieval. The extensibility of PostgreSQL is evi-
dent through the support for user-defined data types, functions, and op-
erators, allowing users to customize their database environment [28].
SQL Server, on the other hand, is an enterprise-scale relational DBMS
tightly connected to Microsoft’s .NET environment. MySQL has been
the most popular open-source DBMS. In September 2025, DB-Engines
(https://db-engines.com/en/ranking) ranked MySQL, SQL Server and
PostgreSQL as the 2nd, the 3rd and the 4th most popular DMBSs.

3. Research method

In this section, we describe the research setting: logical and physical
database setup, benchmarked queries and variables, and data analysis.
The research setting is reported in detail in a GitHub repository,’ which
contains scripts and instructions needed to reproduce the benchmark,
as well as our raw data results.

3.1. Logical database setup

One crucial aspect for our research setting is to create the same
database in different normal forms in order to compare them. The 3NF
database schema (Fig. 2) is provided by the TPC-H benchmark. We
designed the 2NF schema by denormalizing a copy of the original 3NF
schema into tables that adhere to 2NF but not to 3NF (Fig. 3). Next,
we created a copy of the 2NF schema and denormalized its structure
until it did not adhere to 2NF, but adhered to 1NF (Fig. 4). These three
schemas form the basis of the performance comparison tests.

1 https://github.com/marinfotache/normal_forms_and_sql_query_performan
ce.

Information Systems 136 (2026) 102636

In the 3NF database schema (Fig. 2), tables can be joined within
three axes originating in table 1ineitem:

(a) lineitem-partsupp-part which might be called the product
description axis

(b) 1lineitem-partsupp-supplier-nation-region which
might be called the product provenance axis
(c) lineitem-orders-customer-nation-region which

might be called the product sales axis

In both 2NF and 1NF schemas, table names suggest the source of the
data. For example, in the 2NF schema, table 1ineitem_partsupp_
part is the result of merging three tables from the 3NF schema, namely
lineitem, partsupp, and part. As expected, due to denormaliza-
tion some duplicates occur, such as with 1_partkey, ps_partkey
and p_partkey in table lineitem_partsupp_part of the 2NF
schema. Table names containing underscores also indicate that they
are merged from two or more tables of the original 3NF schema. In
1INF the TPC-H database schema contains three tables that correspond
to the above three join axes.

Moreover, some queries may demand computing resources beyond
those available in the current system, and they are usually aborted
by the DBMS. Consequently, in this paper, we used an additional
performance metric, i.e., query completion, which signals if the query
was completed within the 30 min timeout or canceled by the DBMS.

The goal of the experiment in this paper was to examine query
performance on three schema variants of the TPC-H database: 3NF,
2NF, and 1NF. Each database schema was tested with two database
sizes, namely 0.1 GB and 1.0 GB of data spread among the tables.
The dataset sizes are referred to as the scale factors (SF) as per TPC-H
vocabulary. Overall, the tests were run as follows:

1. Create a schema for the 3NF schema.

2. Create and populate the original 3NF schema using the TPC-H’s
DBGen utility with a scale factor of 0.1 GB.

3. Generate 1000 SQL queries for the original 3NF schema.

4. Set a timeout of 30 min for each query execution. Queries
exceeding the execution time of 30 min will be considered
aborted due to timeout. Other queries might be canceled since
they require resources exceeding those available in the physical
setup described in Section 3.2.

5. Execute the 1000 queries and collect data on query comple-
tion (binary, i.e., completed or canceled) and query duration in
seconds.

6. Create and populate the 2NF schema; 2NF tables were populated
by extracting data from the 3NF schema tables.

7. Create logical equivalents of the initial 1000 queries for the 2NF
schema.

8. Repeat steps 4. and 5. for the 2NF schema.

9. Create and populate the 1NF schema; 1NF tables were populated
by extracting data from the 3NF schema tables.

10. Create logical equivalents of the initial 1000 queries for the 1NF
schema.

11. Repeat steps 4. and 5. for the 1NF schema.

12. Delete the INF and 2NF schemas along with their data, and
delete all the data from the 3NF schema. Repeat the steps from
3. to 11, but using a scale factor of 1.0 GB.

This 12-step scenario was executed for each of the three DBMSs,
sharing the query sets, with some tweaks related to SQL syntax dif-
ferences. A small number of PostgreSQL queries could not be conve-
niently converted into SQL Server’s SQL dialect. For example, in SQL
Server, ORDER BY items can appear in the select list only if SELECT
DISTINCT is specified.

https://db-engines.com/en/ranking
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance
https://github.com/marinfotache/normal_forms_and_sql_query_performance

M. Fotache et al.

LINEITEM

1_orderkey INT
1_linenumber INT
1_partkey INT
1_suppkey INT
1_quantity INT
1_extendedprice INT
1_discount INT

1 tax INT

SUPPLIER

PARTSUPP

Information Systems 136 (2026) 102636

s_suppkey INT

ps_partkey INT
ps_suppkey INT
ps_availqty INT
ps_supplycost INT
ps_comment VARCHAR

REGION

s_name VARCHAR
s_address VARCHAR |

r_regionkey INT

s_nationkey INT
s_phone VARCHAR

r_name VARCHAR
r_comment VARCHAR

s_acctbal INT

s_comment VARCHAR

NATION

PART 4H>
p_partkey INT

1_returnflag VARCHAR

1 linestatus VARCHAR
1_shipdate TIMESTAMP
1_commitdate
TIMESTAMP
1_receiptdate
TIMESTAMP
1_shipinstruct VARCHAR|
1 shipmode VARCHAR
1_comment VARCHAR

p_name VARCHAR

n_nationkey INT
n_name VARCHAR
n_regionkey INT
n_comment VARCHAR

p_mfgr VARCHAR
p_brand VARCHAR
p_type VARCHAR

ORDERS

p_size INT

o_orderkey INT
o_custkey INT
o_orderstatus VARCHAR
o_ totalprice INT
o_orderdate
TIMESTAMP

o_ orderpriority
VARCHAR

o_clerk VARCHAR

o_ shippriority INT
o_comment VARCHAR

p_container VARCHAR

CUSTOMER

p_retailprice INT
p_comment VARCHAR

.

c_custkey INT

¢_name VARCHAR
¢_address VARCHAR
c_nationkey INT
¢_phone VARCHAR
¢_acctbal INT
c_mktsegment VARCHAR
¢_comment VARCHAR

LINEITEM_PARTSUPP
_PART

Fig. 2. The original TPC-H schema, which adheres to 3NF.

1_orderkey INT
1_linenumber INT
1_partkey INT
1_suppkey INT
1_quantity INT
1_extendedprice INT
1_discount INT

1_tax INT

1_returnflag VARCHAR
1_linestatus VARCHAR
1_shipdate TIMESTAMP
1_commitdate
TIMESTAMP
1_receiptdate
TIMESTAMP
1_shipinstruct VARCHAR|
1_shipmode VARCHAR
1 comment VARCHAR
ps_ partkey INT
ps_suppkey INT
ps_availqty INT
ps_supplycost INT
ps_comment VARCHAR
p_name VARCHAR
p_mfgr VARCHAR
p_brand VARCHAR
p_type VARCHAR
p_size INT

p_ container VARCHAR
p_retailprice INT
p_comment VARCHAR

ORDERS_CUSTOMER
_ NATION REGION

o_orderkey INT
o_custkey INT

o_orderstatus VARCHAR

o_ totalprice INT
o_orderdate
TIMESTAMP

o_ orderpriority
VARCHAR

o_clerk VARCHAR
o_shippriority INT
o_comment VARCHAR
¢_custkey INT
c¢_name VARCHAR
c_address VARCHAR
¢_nationkey INT
¢_phone VARCHAR
c_acctbal INT

¢_mktsegment VARCHAR

¢_comment VARCHAR
n_nationkey INT
n_name VARCHAR
n_regionkey INT
n_comment VARCHAR
r_regionkey INT
r_name VARCHAR
r_comment VARCHAR

LINEITEM

1_orderkey INT
1_linenumber INT
1_partkey INT

1 _suppkey INT
1_quantity INT
1_extendedprice INT
1_discount INT

1 _tax INT

LINEITEM _PARTSUPP
_ SUPPLIER_NATION
_REGION

1_returnflag VARCHAR
1_linestatus VARCHAR
1_shipdate TIMESTAMP
1_commitdate
TIMESTAMP
1_receiptdate
TIMESTAMP
1_shipinstruct VARCHAR
1_shipmode VARCHAR

1 comment VARCHAR

Fig. 3. TPC-H

database schema in 2NF.

1_orderkey INT
1_linenumber INT
1_partkey INT
1_suppkey INT
1_quantity INT
1_extendedprice INT
1_discount INT

1 tax INT

1_returnflag VARCHAR
1_linestatus VARCHAR
1_shipdate TIMESTAMP
1 _commitdate
TIMESTAMP
1_receiptdate
TIMESTAMP
1_shipinstruct VARCHAR
1_shipmode VARCHAR
1_comment VARCHAR
ps_partkey INT
ps_suppkey INT
ps_availgqty INT
ps_supplycost INT
ps_comment VARCHAR
s_suppkey INT

s_name VARCHAR
s_address VARCHAR
s_nationkey INT
s_phone VARCHAR
s_acctbal INT
s_comment VARCHAR
n_ nationkey INT
n_name VARCHAR
n_regionkey INT
n_comment VARCHAR
r_regionkey INT
r_name VARCHAR
r_comment VARCHAR

M. Fotache et al.

LINEITEM PARTSUPP
_ SUPPLIER_ NATION
_REGION

1 orderkey INT

1 linenumber INT

1 partkey INT

1 suppkey INT

1 quantity INT

1 extendedprice INT

1 discount INT

1 tax INT

1 returnflag VARCHAR

1 linestatus VARCHAR

1 shipdate TIMESTAMP
1 commitdate
TIMESTAMP

1 receiptdate
TIMESTAMP

1 _shipinstruct VARCHAR
1 shipmode VARCHAR [}

Information Systems 136 (2026) 102636

LINEITEM ORDERS
_CUSTOMER_NATION
_REGION

LINEITEM PARTSUPP
_PART

1 comment VARCHAR
ps_ partkey INT
ps_suppkey INT

ps_ availqty INT
ps_supplycost INT
ps_comment VARCHAR
s_suppkey INT
s_name VARCHAR
s_address VARCHAR
s_nationkey INT
s_phone VARCHAR
s_acctbal INT
s_comment VARCHAR
n_nationkey INT
n_name VARCHAR
n_regionkey INT
n_comment VARCHAR
r_regionkey INT
r_name VARCHAR
r_comment VARCHAR

3.2. Physical database setup

The tests were run in an OpenStack cloud environment using a

1 orderkey INT

1 linenumber INT

1 partkey INT

1 suppkey INT

1 quantity INT

1 extendedprice INT

1 discount INT

1 tax INT

1 returnflag VARCHAR
1 linestatus VARCHAR
1 shipdate TIMESTAMP
1 commitdate
TIMESTAMP

1 receiptdate
TIMESTAMP

1 shipinstruct VARCHAR
1 shipmode VARCHAR
1 comment VARCHAR
ps_ partkey INT
ps_suppkey INT

ps_ availqty INT

ps_ supplycost INT
ps__comment VARCHAR
p_name VARCHAR
p_mfgr VARCHAR
p_brand VARCHAR
p_type VARCHAR
p_size INT

p_container VARCHAR
p_ retailprice INT
p_comment VARCHAR

Fig. 4. TPC-H database schema in 1NF.

to not impose any advantage to some queries over others, we did not

1 orderkey INT

1 linenumber INT

1 partkey INT

1 suppkey INT

1 quantity INT

1 extendedprice INT

1 discount INT

1 tax INT

1 returnflag VARCHAR
1 linestatus VARCHAR
1 shipdate TIMESTAMP
1 commitdate
TIMESTAMP

1 receiptdate
TIMESTAMP

1 shipinstruct VARCHAR
1 shipmode VARCHAR
1 comment VARCHAR
o_orderkey INT

o_ custkey INT
o_orderstatus VARCHAR
o_totalprice INT
o_orderdate
TIMESTAMP
o_orderpriority
VARCHAR

o_clerk VARCHAR
o_shippriority INT
o_comment VARCHAR
¢_custkey INT

c¢_name VARCHAR
c¢_address VARCHAR
¢_nationkey INT
¢_phone VARCHAR
¢_acctbal INT
c_mktsegment VARCHAR
¢_comment VARCHAR
n_nationkey INT
n_name VARCHAR
n_regionkey INT
n_comment VARCHAR
r_regionkey INT

r name VARCHAR
r_comment VARCHAR

create any additional index in any of the schemas.

single-node server. The environment and hardware are detailed in

Table 1. The physical database structures for all schemas were kept
unoptimized, except for the indexes associated with the primary keys
and the foreign keys. That is, as DSSs typically process ad hoc queries
rather than queries embedded in the host language of the system, the
physical structures of DSSs often lack supporting data structures such
as indexes. To simulate the nature of decision support databases, and

3.3. Benchmark queries

Although the TPC-H benchmark includes 22 fine-crafted variants
of DSS queries, using them in this study was not possible, as their
small number makes them less prone to statistical analysis. Instead,
we computationally generated 1000 different SQL queries which were
also typical analytical queries encompassing several tables, filters, tuple
grouping, sorting, etc. These queries were initially designed for the

M. Fotache et al.

Information Systems 136 (2026) 102636

1| -- Q2302110937000003

2| SELECT RTRIM(tl.n_name) AS RTRIM__t1__n_name,

3 tl.n_comment AS t1__n_comment,

4 tl.n_nationkey AS ti1__n_nationkey,

5 MIN(LTRIM(t2.n_comment)) AS MIN__LTRIM__t2__n_comment,

6 MIN(t2.s_suppkey) AS MIN__t2__s_suppkey

7| FROM

8| (SELECT * FROM nation) t1

9 RIGHT JOIN

10| (SELECT * FROM supplier supplier2

11| INNER JOIN nation nation2 ON supplier2.s_nationkey = nation2.n_nationkey) t2
12 ON tl1.n_nationkey = t2.n_nationkey

13| WHERE t2.n_name NOT BETWEEN ’EGYPT > AND ’MOROCCO 2

14| AND tl1.n_regionkey NOT BETWEEN O AND 3

15| AND t2.n_comment LIKE ’%lar, ironi’

16| GROUP BY RTRIM(tl.n_name),

17 tl.n_comment,

18 tl.n_nationkey

19| HAVING MIN(t2.s_suppkey) <= (

20| SELECT MIN(t2.s_suppkey) AS MIN__t2__s_suppkey

21| FROM

22 (SELECT * FROM nation) ti

23 RIGHT JOIN

24 (SELECT * FROM supplier supplier2

25 INNER JOIN nation nation2 ON supplier2.s_nationkey = nation2.n_nationkey) t2
26 ON tl1.n_nationkey = t2.n_nationkey

27| WHERE t2.n_name NOT BETWEEN ’EGYPT > AND ’MOROCCO ?

28| AND tl.n_regionkey NOT BETWEEN O AND 3

29| AND t2.n_comment LIKE ’%lar, ironi’

30| AND tl.n_comment <= ’ously. final express gifts cajole a’

31| AND t2.s_address BETWEEN ’bWwHUuQgVo689rHdr9S7tX2czhAeL3Lp4MU1im6W’> AND ’tfZRU1l9jXa j’
32| AND t2.n_regionkey <> 3

33|)

34| OR MIN(LTRIM(t2.n_comment)) >= (

35 SELECT MIN(LTRIM(t2.n_comment)) AS MIN__LTRIM__t2__n_comment

36 FROM

37 (SELECT * FROM nation) ti1

38 RIGHT JOIN

39 (SELECT * FROM supplier supplier2

40 INNER JOIN nation nation2 ON supplier2.s_nationkey = nation2.n_nationkey) t2
41 ON tl1.n_nationkey = t2.n_nationkey

42 WHERE tl.n_regionkey NOT BETWEEN O AND 3

43 AND t2.n_comment LIKE ’%lar, ironi’

44 AND t2.s_name NOT BETWEEN ’Supplier#00001653 ’ AND ’Supplier#00007455 °
45 AND t2.s_comment > ’deposits cajole slyly! ironic, silent accounts breach. carefu’
46|)

47| LIMIT 297;

Fig. 5. One of the 1000 queries run on the 3NF schema (PostgreSQL).

Table 1
Hardware and software used.

Component Description

CPU Xeon-Gold 6240 @ 2.6 GHz (8 vcores)
Memory 16 GB DDR4 @ 2933 MHz

Disk RAID-5 NL-SAS HDDs (12K IOPS)
Environment OpenStack cloud

Benchmark TPC-H 3.0.0 with custom queries

(O] Ubuntu 20.04.3 LTS

DBMS 1 PostgreSQL 16.0

DBMS 2 SQL Server 2019

DBMS 3 MySQL 8.0.42

3NF schema, yet logical equivalents of the queries were created for
the 2NF and 1NF schemas. Fig. 5 shows an example query (written
in PostgreSQL’s SQL dialect) of the initial 1000-query sets used in our
tests, which will also serve to define the variables used in subsequent
statistical tests and machine learning models.

The generated queries contain SQL features typical for analytics,
such as scalar and non-scalar subqueries, GROUP BY, HAVING, and
ORDER BY clauses with SKIP and OFFSET. Queries were generated
randomly, limiting some parameters to control the query complexity,
described in more detail in Section 4.

Expressions in the WHERE and HAVING clauses may contain opera-
tors such as BETWEEN, IN and LIKE, as well as classical comparison
operators. Tuple groups created with the GROUP BY clause are based
on primitive table attributes or scalar functions such as RTRIM().

The main driver for the query complexity is the number of sub-
queries declared in the FROM clause(s). Each set of subqueries included
in FROM is called a join path and it retrieves data from any subset
of tables in join axes (a)-(c) defined in Section 3.1. The query in
Fig. 5 retrieves data from two join paths using two subqueries which
materialize in ad hoc tables t1 (line 8) and t2 (line 11) for reference
in subsequent sections. Table 2 describes the join paths of the query
in Fig. 5 in all three schemas (INF, 2NF, 3NF). For t1, even if the
information may be retrieved from a single 3NF table (nation), in
2NF the same information must be extracted from a much larger

M. Fotache et al.

Table 2
Join paths for the three variations of the query shown in Fig. 5.

Normal form Join path Content of the derived table

3NF tl A single table.

3NF t2 Two tables with an inner join.

2NF tl A single table incorporating four 3NF tables.
2NF t2 A single table incorporating five 3NF tables.
1NF tl A single table incorporating five 3NF tables.
INF t2 A single table incorporating five 3NF tables.

table (orders_customer_nation_region), whereas in the INF
schema, the table is even larger (1ineitem_orders_customer_
nation_region). In contrast, for t2 a table join is required in the
3NF schema, but not in the 2NF or 1NF schemas.

The query generator can handle any number of join paths, but
queries in this paper were limited to three join paths. Within a join
path, tables may be joined using INNER or RIGHT QOUTER joins. When
two join paths can be joined (using INNER or any type of OUTER joins)
by two or more tables, the linking table is chosen at random (in Fig.
5, nation is the linking table). For the query sets in this paper, the
join paths may be joined only by the primary key of the linking table
(lines 9 and 12). Subqueries may appear only in the FROM clause (for
defining derived tables, such as t1 and t2) or the HAVING clause, but
neither in the WHERE nor in the SELECT clauses.

Each initial 1000-query set was generated for a given database scale
factor and the query predicates included attribute values specific to that
scale factor content. Within the initial query, queries are independent
from one another. When converting the initial queries for execution
into the 2NF schema, and then into the 3NF schema, all clauses are kept
unchanged except for the FROM clause. All FROM clauses included in
the main query and all its subqueries were updated so that the number
of necessary joins was minimized.

3.4. Variables

Table 3 contains the list of variables used in all subsequent tests
and machine learning models. Most variables are related to the query
complexity and result size, i.e., the numbers of filtering predicates for
tuples (in WHERE) and groups (in HAVING), the numbers of result
columns and rows, etc.

The remaining variables in Table 3 refer to: the DBMS (dbserver);
the database size (scale_factor); the normal form of the database
(normal _form); a binary variable (Query_completion) with two
values, canceled if the query could not be completed within the 30-
min timeout, and completed when the execution was successful; and the
execution time in seconds of the completed queries (duration_sec).
As Section 4 will show, due to the skewness of its distribution, in the
ML scoring models variable duration_sec was transformed using
the 1og10 function.

Variables of interest such as the number of joins in the main FROM
clause or the size of the processed tables were not included in the
analysis since they are largely correlated with the normal form and the
database size.

3.5. Data analysis

RQs 1.1 and 2.1 (i.e., the association between normalization and
query completion and duration) were answered with statistical tests,
while RQs 1.2 and 2.2 (i.e., the importance of different query con-
stituents in different normal forms for query completion and duration)
were assessed with machine learning models. An alpha level of « = .05
was selected for all statistical tests.

For RQ 1.1, the statistical significance of the association between
query completing successfully (i.e., within the 1,800 s timeout; a binary
outcome) and the database normal form was assessed with Cochran’s

Information Systems 136 (2026) 102636

Q test, which is an extension of McNemar’s test [29,30] for paired
data. The null hypothesis assumes equal proportions for query comple-
tion success across all normal forms, while the alternative hypothesis
suggests that at least one normal form differs.

For RQ 1.2, a series of machine learning models were built and
tuned to predict the successful completion of the query within the
30 min timeout. The outcome variable, query_completion, is bi-
nary (canceled vs. completed). Predictors were all variables in Table
3 except for the query duration (duration_sec). The classification
models were built using two of the most popular algorithms, ran-
dom forest (RF) and extreme gradient boosting (XGBoost). Growing
ensembles of classification or regression trees [31,32], RF [33] and
XGBoost [34,35] have recorded good performance in both classification
and regression problems [36]. Whereas RF performs better in variance
reduction, XGBoost is better in bias reduction [37].

The importance of normal form among other predictors of query
completion and the patterns of relationships between main predictors
and the outcome were examined with techniques related to Inter-
pretable Machine Learning [38-40]. Permutation-based variable im-
portance methods measure how much the model performance changes
when the effect of a selected predictor is removed through perturba-
tions, i.e., permutations of the predictor’s values [40]. The shape of the
relationships between model predictors and the outcome was examined
using techniques such as Partial Dependency Plots, and Accumulated
Local Effects [38,40,41].

For RQ 2.1, the association between the normal form and the du-
ration of the completed queries was assessed with Friedman’s test [29]
which is a non-parametric alternative to the one-way repeated mea-
sures ANOVA test. It estimates the statistical significance of differences
between the distributions of three or more paired groups when the
distribution of the outcome variable is not normal. In our case, the
null hypothesis of Friedman’s test assumes there are no significant
differences in query duration among the three normal forms.

For RQ 2.2, another series of machine learning models were built
and refined to predict the duration of completed queries. The initial
outcome variable was query duration in seconds, but since it was
highly skewed, it was transformed with the 1og10 function, i.e., with
common logarithm. The models were built using the same algorithms
as in RQ 1.2, i.e., RF and XGBoost. The predictor’s importance and
the shape of the association between predictors and the outcome were
examined using the same Interpretable Machine Learning techniques as
for the classification models.

Similar to other machine learning algorithms, random forest and
XGBoost have hyperparameters that cannot be learned directly from
the data, but they need to be optimized [42]. In this paper, two
RF hyperparameters were tuned in both classification and regression
models: (1) the number of random attributes used at each node split
(mtry), and (2) the minimum number of observations in a node as
a requirement for further splitting (min_n). The number of tree pa-
rameters was fixed at 700 in all the RF models. Five hyper-parameters
were tuned in XGBoost models: (1) the learning rate (Learn_rate),
(2) the minimum reduction in the loss function for proceeding to a
further split (Loss_reduction), (3) the maximum depth of the tree
(tree_depth), (4) the size of the random samples (sample_size),
(5) min_n, and (6) mtry. The later two hyperparameters are the same
as in the RF models. The number of trees was fixed for all XGBoost
models to 1000.

Random grid search was the preferred method used to find the
best combination of hyperparameters [43]. Grids included 100 com-
binations of tuned hyperparameters in the RF-trained models and 300
combinations of tuned hyperparameters in the XGBoost-trained mod-
els. The performance of the classification models was assessed using
the receiver operating characteristic area under the curve (ROC-AUC)
metric [44]. The performance of scoring models was assessed with the
root mean square error (RMSE) metric, but also the coefficient of de-
termination (R2) was used to compare the models [44] since it is easier

M. Fotache et al.

Information Systems 136 (2026) 102636

Table 3

Variable names used in the analyses, and their descriptions.
Variable Description
SELECT_cols No. of columns in the result table

SELECT_non_aggr_func
SELECT_SUBSTR
SELECT_date_func
SELECT _aggr_func
FROM_join_paths
WHERE _predicates
WHERE_pkey_attribs
WHERE__between

WHERE__in No
WHERE__like No.
WHERE _non_aggr_func No.

WHERE_func__date
GROUP_BY_cols
HAVING_non_scalar_subgq
HAVING_scalar_subq

ORDER_BY_cols No.
limit No.
offset No.
dbserver

scale_factor

. of rows in the result table

of rows skipped in the result table

mssqlserver or postgresql
Database size (0.1 GB or 1.0 GB)

. of all non-aggregate functions appearing in the main SELECT clause
. of SUBSTR functions in the main SELECT clause

. of date functions in the main SELECT clause

. of aggregate functions in the main SELECT clause

. of join paths in the main FROM clause

. of predicates in the WHERE clause

. of primary key attributes in WHERE clauses

. of BETWEEN operators in WHERE clauses

. of IN operators in WHERE clauses

. of LIKE operators in WHERE clauses

. of non-aggregate functions in the main WHERE clauses
. of date functions in the main WHERE clause

. of GROUP BY columns

. of non-scalar subqueries in the HAVING clause

. of scalar subqueries in the HAVING clause

. of ORDER BY columns

normal_form
query_completion
duration_sec

Database normal form (1NF, 2NF or 3NF)
Whether the query execution was completed during the 30 min timeout
Query execution times (in seconds) for each completed query

to interpret. To reduce overfitting, repeated (five times) five-fold cross-
validation of the training set was combined with random grid search for
hyperparameter tuning [44]. Initial datasets were split into the training
and testing subsets, with a split ratio of 75/25. The stratified split for
the classification models enforced the same distribution of the binary
outcome in both the training and the testing subsets.

All exploratory data analysis, statistical tests, and machine learning
modeling were performed in R [45]. The tidyverse ecosystem of
R packages [46] served as the main tool for data preparation and
exploratory data analysis. Most charts were generated by the ggplot2
package, which is part of the tidyverse, with support from other
packages, such as ggforce [47] and corrplot [48]. Cochran’s Q
test and the pairwise comparisons for RQ1.1 were performed with the
package rstatix [49]. Package ggstatsplot [50] was utilized for
the Friedman’s test (RQ2.1).

The tidymodels ecosystem of packages [51] was employed for
model building and tuning. The RF models were fitted with the ranger
engine [52], whereas the engine used for building the XGBoost models
was xgboost [53]. All the Interpretable Machine Learning tech-
niques (Variable Importance, Partial Dependency Profiles, Individual
Conditional Expectation, and Accumulated Local Effects Profiles) were
deployed using the DALEX ecosystem [54,55].

4. Results

All data analysis techniques described in Section 3.5 were applied
separately for PostgreSQL, SQL Server, and MySQL. In this paper, we
were not concerned with the performance comparison between DBMSs,
but whether the normalization results are consistent across DBMSs.
Of the initial set of 1000 queries generated for each scale factor in
PostgreSQL, only 983 could be adapted to perform identical tasks in
SQL Server due to differences in SQL dialects. All of 1000 queries were
adapted with minor adjustments to run in MySQL.

4.1. Higher normal form facilitates queries completing successfully

For RQ 1.1, the completion of queries in all DBMSs among scale
factors and normal forms is summarized in Fig. 6. For all DBMSs and
scale factors, the figure suggests that increasing the normal form is
associated with better chances of query successful completion (within
the 30 min timeout). For the tiny scale factor of 0.1 GB, in SQL Server

the percentage of successful queries increased from 74% (1NF), to 77%
(2NF), and to 89% (3NF). The trend was similar in MySQL: 70% (1NF),
71% (2NF), and 88% (3NF) and PostgreSQL: 72% (1NF), 75% (2NF),
and 90% (3NF).

By increasing the scale factor to 1 GB, the percentages of successful
queries decreased for all normal forms and DBMSs, since the queries
processed larger amounts of data which requires longer execution times
(sometimes over the 30 min timeout), or more computing resources
than those provided by the current system. Nevertheless, among normal
forms, the success rate increased from 60% (1NF), to 62% (2NF), and
to 78% (3NF) in SQL Server, from 59% (1NF), to 60% (2NF), and to
78% (3NF) in MySQL, and from 56% (1NF), to 59% (2NF) and to 81%
(3NF) in PostgreSQL. Migrating the database from 2FN to 3NF appeared
particularly important for query completion.

Cochran’s Q test determined that, for all DBMSs, there was a sta-
tistically significant difference in the proportion of successful queries
among the normal forms: y2(2) = 477, p < .001 for SQL Server, y2(2)
= 540, p < .001 for MySQL, and y2(2) = 679, p < .001 for PostgreSQL.
There is enough statistical evidence to state that the normal form is
associated with successful query completion, for both scale factors,
given the 30-min timeout set for the query completion. In all three
DBMSs, all pairwise comparisons (i.e., 1NF-2NF, 1NF-3NF, and 2NF-
3NF) were statistically significant (p < .001), except for the 1NF-2NF
pair in MySQL.

4.2. Normal form is ranked as the second most important predictor for
queries completing successfully

For RQ 1.2, the importance of the query constituents resulting from
database normalization in query completion was assessed with a series
of machine learning classification models using two popular algorithms,
random forest (RF), and extreme gradient boosting (XGBoost), as de-
scribed in Section 3.5. We fitted and refined separate models for each
database server, to check if the results of (de)normalization are similar.

The best models for RF and XGBoost were selected among 5 cross-
validation folds based on their performance, as assessed with the
ROC-AUC metric. For all three DBMSs, the best RF performance was
recorded for models with three randomly selected features at each split
(mtry) and four minimum observations required to split a node further
(min_n). SQL Server and PostgreSQL shared the best combination
of hyperparameters for the XGBoost classification models: 9 features
at each split (mtry); 11 minimum observations required to split a

M. Fotache et al.

Information Systems 136 (2026) 102636

SF 0.1

1000 4
900
800 -
7001
600
500
400 1
300+
200
1004

0-

Janias|bssw

1000 1
900
800 -
700+
600 -
500 1
400 1
300+
200+
100

0-

frequency

|bsAw

1000 1
900
800 -
7001
600 -
500 1
400
300+
200+
100

[bsaibysod

2NF 3NF

2NF 3NF

query_completion . successful . unsuccessful

Fig. 6. Query completion among DBMSs, scale factors, and normal forms.

node further (min_n); maximum 10 levels of depth for each tree
in the boosting ensemble (tree_depth); a learning rate of 0.086
(learn_rate); a minimum amount of loss reduction required to make
a further partition on a leaf node of 0.00000423 (Loss_reduction);
a sample size of 0.928 (sample_size). For MySQL, the best av-
erage ROC-AUC across the cross-validation folds was recorded for
mtry =19, min_n = 8, tree_depth = 13, learn_rate = 0.067,
loss_reduction = 1.55, and sample_size = 0.866.

All selected models seem reliable since they recorded very good
performance on new data, i.e., the test set, with RF models slightly
outperforming their XGB counterparts. The ROC-AUC for the selected
RF models was 0.945 for SQL Server, 0.947 for MySQL and 0.943
for PostgreSQL, whereas the selected XGBoost models recorded the
ROC-AUC of 0.933 for SQL Server, 0.930 for MySQL and 0.935 for
PostgreSQL. Also, in terms of accuracy, the RF final models performed
better than the XGBoost selected models: 0.902 vs. 0.883 for SQL
Server, 0.891 vs. 0.870 for MySQL, and 0.885 vs. 0.881 for PostgreSQL.

The results in Fig. 7 show that, for all three DBMSs, the number
of join paths (FROM_join_paths) is the most important predictor
for queries completing successfully, followed by the normal form. The
importance of the remaining predictors is notably smaller. This was sur-
prising, especially for the scale factor, since we expected the database

size to play a greater role in the query completion. Admittedly, the
variation of the database size was small, since the tests covered only
the 0.1 GB and 1.0 GB scale factors. The variable importance plots
were drawn only for the selected RF models since they outperformed
XGBoost models.

For the four most important predictors (as ranked by the selected
RF classification models) associated with the probability of a query
being completed, Fig. 8 presents two popular plots for the model-level
interpretation, i.e., Partial Dependency Profiles (PDP) and Accumulated
Local Effects (ALE) Profiles. They complement each other and, when
converging, the results are more reliable. Each of the profiles shows
how an increase in the predictor’s value (displayed on the x-axis) is
associated with an increase or decrease in the probability (displayed
on the y-axis) of the query being completed. The shape of the plots is
similar for all four predictors and three DBMSs.

Increasing the number of join paths (from 1 to 2, and then to
3) is associated with a steep probability decrease in the query being
completed within the 30 min timeout. By contrast, when increasing
the normal form, the probability increases; the probability increase is
steeper when moving from 2NF to 3NF than when the database normal
form increases from 1NF to 2NF. Increasing the database size from
0.1 GB to 1.0 GB decreases the odds that the query would be completed,

M. Fotache et al.

Permutation-Based Variable Importance
Random Forest - MS SQL Server

FROM_join_paths

normal_form

FROM_join_paths -
normal_form -
scale_factor_X1
WHERE_predicates
GROUP_BY_cols
HAVING_non_scalar_subq
HAVING_scalar_subq

limit

SELECT_cols
SELECT_non_aggr_func

scale_factor_X1

WHERE_predicates -

ORDER_BY_cols -

GROUP_BY_cols -

limit -

SELECT _cols -

SELECT_aggr_func-

SELECT_non_aggr_func-
0.00

0.00 0.02 0.04 0.06
One minus AUC loss after permutations

Permutation-Based Variable Importance
Random Forest - MySQL

One minus AUC loss after permutations

Information Systems 136 (2026) 102636

Permutation-Based Variable Importance

Random Forest — PostgreSQL
FROM_join_paths
normal_form
scale_factor_X1
WHERE_predicates
SELECT_cols
offset
limit
SELECT_non_aggr_func
GROUP_BY_cols
SELECT_aggr_func

0.00 0.05 0.10
One minus AUC loss after permutations

0.05 0.10

Fig. 7. Ten most important predictors for queries completing successfully in the random forest classification models.

Feature Effects (RF) - MS SQL Server

Feature Effects (RF) - MySQL

Feature Effects (RF) — PostgreSQL

FROM_join_paths normal_form FROM_join_paths normal_form FROM_join_paths normal_form
__/
06 \
0.5 0.5
0.3
c 0.0 _— c 00 g 00 \
S \ S S
8 kel e
g 1.0 1.5 2.0 2.5 3.01.0 1.5 2.0 2.5 3.0 § 1.0 1.5 2.0 2.5 3.01.0 1.5 2.0 2.5 3.0 E 1.0 1.5 2.0 2.5 3.01.0 1.5 2.0 2.5 3.0
[=% = ALE [=% = ALE a
Q i (o) i [} i
> scale_factor_X1 HERE_predicates PDP 3 scale_factor_X1 | WHERE_predicates Random Forest > scale_factor_X1 | WHERE_predicates
g 9 Ll —_— g
© 0.6 © ©
0.5 0.5
0.3
00— || T ~——— o0 R Il

0.000.250.500.751.00.0 2.5 5.0 7.5

0.000.250.500.751.00.0 2.5 5.0 7.5

0.000.250.500.751.00.0 255 50 7.5

Fig. 8. Feature effects of the selected random forest classification model for the most important four predictors of successful query execution; probability of
execution to be successful is on the y axis; green lines represent partial dependency profiles and blue lines represent accumulated local effects profiles. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

but the decrease is smaller than in the case of the number of join paths.
Finally, Fig. 8 suggests that a larger number of predicates included in
the main WHERE clause (this number varied between 0 and 9) slightly
decreased the odds of the query being completed.

4.3. Higher normal form facilitates faster query execution time

For analyzing RQ 2.1, we removed queries that were not completed
in all three normal forms and all DBMSs. This resulted, for each DBMS,
in 598 queries for the scale factor of 0.1 GB and 436 queries for the
scale factor of 1.0 GB. The statistical significance of the association
between query duration and database normal form was assessed with
Friedman’s test, as duration was not normally distributed.

Results in Fig. 9, as provided by the ggstatsplot package,
revealed statistically significant relationships between the normal and
the query duration for all servers when the queries of both scale factors
were tested together: y2(2) = 635, p < .001 for SQL Server, y%(2) =
254, p < .001 for MySQL, and x2(2) = 559, p < .001 for PostgreSQL.
The effect size, as measured by Kendall’s W, was found to be 0.31
(C195% [0.28, 1.00]) for SQL Server, 0.12 (CI95% [0.10, 1.00]) for
MySQL, and 0.27 (CI95% [0.23, 1.00]) for PostgreSQL. For a TPC-H
database size under 1 GB, the intensity of the relationship between
query duration and the database normal form seems to be moderate
in SQL Server and PostgreSQL, but weaker in MySQL.

Durbin-Conover-corrected pairwise comparisons were conducted as
post hoc tests, revealing that, for each DBMS, all pairwise compar-
isons between the normal forms in both scale factors were statistically
significant (p < .001).

10

4.4. Normal form is ranked as the most important predictor for query
execution time

As with RQ 2.1, for RQ 2.2 we removed queries that were not
completed in any of the three database schemas. For each of the three
DBMSS, a series of scoring models (based also on RF and XGBoost) were
built and tuned to predict log,, of query duration (we opted to trans-
form duration with the logarithm because of its skewed distribution)
in relation to all variables in Table 3 except for query_comple-
tion. The best RF and XGBoost models were identified by tuning
the same hyper-parameters as in the classification models, selecting
at random (by the method of random search) 100 combinations of
hyper-parameters for the RF models and 300 combinations for the XGB
models; model performance was assessed across five cross-validation
folds with the root mean square error (RMSE) metric.

For both SQL Server and MySQL, the lowest RMSE in RF models
was recorded for mtry = 9 and min_n = 4 (for the full names of
hyper-parameters, see the classification models in Section 4.2). For
PostgreSQL, the best RF models had mtry = 4 and min_n = 5.

In the XGBoost models, all three DBMSs shared the best combi-
nations of hyper-parameters: mtry = 4, min_n = 5, tree_depth
= 6, learn_rate = 0.0309, loss_reduction = 2.00e-10, and
sample_size = 0.944.

While RMSE was the metric used to identify the best model, the
coefficient of determination (R?) is easier to interpret, as a percentage
of the outcome variability explained by the model. On the test set, the
selected XGBoost models recorded RMSE = 0.625 and R? = 0.701 for
SQL Server, RMSE = 0.700 and R? = 0.674 for MySQL, and RMSE
= 0.701 and R? = 0.654) for PostgreSQL, outperforming their RF
counterparts, where RMSE = 0.701 and R? = 0.635 for SQL Server,
RMSE = 0.725 and R? = 0.658 for MySQL, and RMSE = 0.739 and R?
= 0.636) for PostgreSQL.

M. Fotache et al. Information Systems 136 (2026) 102636

Query Duration vs. Normal Form - MS SQL Server Query Duration vs. Normal Form - PostgreSQL
X reaman(2) = 635.05, p = 1.26€~138, Windan = 0.31, Clogg; [0.28, 1.00], pgirs = 1,034 redman(2) = 558.97, p = 4.188-122, Windan = 0.27, Clogy; [0.23, 1.00], pgics = 1,034
Prioim-ag. = 1.35€-50 2000- Prioim-ad. = 1.83e-/6
2000- PHolm-ad =2.61e-166 3 Phoim-ad =T7.52e-135)
Phoim-ad;, = 2.29e-47 F Phioim-aq. = 1.34€-13 g
g 3
g 2
1500- g oo o
£ 5
I} g o g
[3 QO 3
) [] s 0 S
g s ¢ g
S 1000- § .5 1000 H
5 e 5 g
© » T @
3 E
500- 5 500- -
-5 2
«Q «Q
3, 3,
g g
H H
0- Timeain =318 || nean=1.62 | fimeaon=0.42 0- { Rnoion =9.69 |- finaaan =619 fimedon =159
INF 2NF 3NF INF 2NF 3NF
(n=1,034) (n=1,034) (n=1,034) (n=1,034) (n=1,034) (n=1,034)
normal_form normal_form
Query Duration vs. Normal Form - MySQL
% esman(@) = 253.70, p = 8.11€-56, Wiengan = 0.12, Class [0.10, 1.00], paics = 1,034
Pholm-adj. = 4.90€-22
Phioim-aq, = 8.68e-60 o
. 3
2000 Driom-aq, = 185612 g
(rromed” P 5
g
1500- g
o g
Q -
» &
:\ [g
[=] + °
S 1000~ 3
= g
b
°
H
500- 2
Q
3.
E
2
0- fineqn = 14.45 fimedian =9.04 Timeon =2.29
INF 2NF 3NF
(n=1,034) (n =1,034) (n=1,034)
normal_form
Fig. 9. Association between the query duration and the database normal form (both scale factors).
Permutation-Based Variable Importance Permutation-Based Variable Importance Permutation-Based Variable Importance
XGBoost - MS SQL Server XGBoost - MySQL XGBoost - PostgreSQL
raviNG non_scater_suba{ - [A A rrom_join_patvs { | wrere _predicates- | -
wrere _predicates { | IS wrere _predicates { | N DEEIR oroer_sv_cos- [GG
SELECT_cols _ SELECT_cols - SELECT_cols- -
oot | arour sy cos| [orset- R
FROM_join_paths - HAVING_non_scalar_subg - HAVING_scalar_subq - -
03 04 05 06 07 03 04 05 06 07 08 09 03 04 05 06 07 08
Root mean square error (RMSE) loss after permutations Root mean square error (RMSE) loss after permutations Root mean square error (RMSE) loss after permutations

Fig. 10. Ten most important predictors for query execution time in the best (selected) XGBoost scoring models.

Since XGBoost models recorded better performances for all three The shape of PDP and ALE profiles is similar for each of the four
servers, subsequent analyses do not consider the RF models, even if predictors on all servers. When increasing the normal form of the
their results largely converge (e.g., in ranking the normal form as the database, the duration of the query decreases; the effect is greater when
most important predictor). As Fig. 10 shows, XGBoost found the normal moving the database schema from 2NF to 3NF.
form as the most important predictor for explaining the variability
of query duration in all three DBMSs. As for the other predictors’ 5. Discussion
importance, there are considerable differences that could be explained
by the server’s query engine features. 5.1. Practical implications

Fig. 11 shows the Partial Dependency Profiles and the Accumulated
Local Effects Profiles of the two most important predictors (as assessed The key findings of this study were: (i) higher normal forms (2NF,
by the XGBoost models) associated with the log;, of the query duration 3NF) improve the likelihood of queries completing successfully within
for all three DBMSs. Interpretation is similar to Fig. 8, but here, on the a 30 minute timeout, (ii) the number of join paths is the top predictor
y-axis, the predicted value of the outcome (log; of the query duration) for successful query completion, followed by database normal form,
is represented. and (iii) higher normal forms facilitate faster query execution times,

M. Fotache et al.

Feature Effects (XGBoost) - MS SQL Server

normal_form scale_factor_X1
S 041 ~
S
° z
2 0.0 =
[oN
©
()]
© -0.4
[]
>
©
-0.8+; . . . - L : : : :
1.0 15 20 25 3.00.00 0.25 0.50 0.75 1.00
Feature Effects (XGBoost) - MySQL
normal_form scale_factor_X1
S 041 P
S
° z
2 0.0 =
Q
(0]
()]
© -0.4
)]
>
©
-0.814 r r r - L r r r r
1.0 15 20 25 3.00.00 0.25 0.50 0.75 1.00

= ALE

Information Systems 136 (2026) 102636

Feature Effects (XGBoost) — PostgreSQL

= ALE

normal_form scale_factor_X1
= 1.0
9
k3]
5 0.5
o
[oN
PDP g’ 0
S 051
>
©
-1.0 T T T 5 T T T T
1.0 15 20 25 3.00.00 0.25 0.50 0.75 1.00
PDP

Fig. 11. Feature effects of the selected XGBoost scoring model for the two most important predictors of query duration.

with significant differences across the three tested normal forms. Addi-
tionally, both random forest and XGBoost models were shown reliable
in this study, with XGBoost showing slightly better performance in
predicting query execution times. Also, results were consistent among
the chosen database servers.

The results suggest that higher normal forms can significantly re-
duce execution times. This can be applied in DSS database design
towards more efficient data retrieval and processing, which is arguably
important for industries relying on large-scale databases. Additionally,
by reducing query execution times and increasing query completion
success, operational costs related to database management can be
lowered without investing more in hardware.

The effects of database normalization should not be considered
in isolation, i.e., not only in regards to query completion and query
execution time. As normalization is about reducing data redundancy as
well as update anomalies, it generally was expected that stricter normal
forms decrease the database size. In the case of the TPC-H database, for
the scale factor of 1.0 GB, the size of the dataset in the 2NF schema is
75% of the 1NF database, whereas the size of the dataset in the 3NF
schema is only 15% of the 2NF database. This highlights the magnitude
of the effects of normalization on database size, as all three databases
contain the same data.

These results have practical applications in computing education.
The results arguably show the importance of teaching database nor-
malization and its practical benefits, especially for DSS databases.
Educators can design exercises that allow students to experience first-
hand the performance improvements associated with higher normal
forms, reinforcing theoretical concepts with practical application.

This study provides a relatively transparently-reported performance
comparison with a purposefully limited scope for evaluating the impact
of database normalization on query performance and query completion
success. This can serve as a benchmark for future research in the
field. The machine learning models suggested that the number of join
paths and normalization level were the most important predictors for
query execution times and successful query completion. Researchers
can build on these findings to explore other factors influencing database
efficiency in different business domains, with benchmarks other than

12

TPC-H, and with different database architectures and configurations,
using the provided methodology and findings as a baseline.

Previous studies have generally supported the notion that higher
normal forms improve data integrity and reduce redundancy. However,
the specific impact on query performance has been less frequently
quantified. This study provides concrete metrics (e.g., query comple-
tion rates, execution times) that extend earlier findings. Furthermore,
the use of machine learning models to predict query performance
is, to the best of our knowledge, a relatively novel approach. The
incorporation of random forest and XGBoost models offers a new
perspective and demonstrates the applicability of these methods in
database performance research.

5.2. Limitations and threats to validity

There are several limitations to our study. Except for the primary
keys and foreign keys indexes, none of the databases were optimized
in terms of physical or logical database structures, nor were SQL Server,
MySQL, and PostgreSQL, or TPC-H, configured besides their default
configurations. While none of these choices arguably reflect real-world
DSS scenarios, many decision support system queries (as opposed to
transactional systems) do not rely on physical or logical structure
optimizations, as they are often ad hoc queries. However, the aim of
the study was not DBMS-DBMS performance comparison.

The timeout of 30 min (i.e., 1800 s) used in this study is arbitrary.
Arguably, data analysis reports which take longer than 30 min are
acceptable. However, we expect that the chosen scale factors mitigate
this, as the datasets used in this study are relatively small when
compared to enterprise data warehouses.

One limitation in scope is that this study focuses on the business do-
main of warehouses, uses merely data retrieval statements, and merely
one, although relatively large, set of queries. Therefore, it is unclear
how extensively the results of this study generalize to other domains
or queries. Additionally, without similar prior studies, it is challenging
to compare our results to what others have observed, which in turn
calls for similar future studies with different settings to understand the
effects of normalization in wider contexts.

M. Fotache et al.

6. Conclusion

Decision support systems are important tools in modern business
environments, providing support for decision-making processes across
various industries. These systems integrate data with sophisticated
analytical models to facilitate informed and timely decisions. The sig-
nificance of DSS lies in their ability to enhance the quality and speed
of decision-making. As decision support systems often handle large
amounts of data, generating insights from this data through querying
is understandably computationally slow. Despite the importance of
decision support systems in general, as well as the need for timely
insights, scientific research concerning the DSS performance has been
relatively scarce. In this study, we analyzed how logical database design
through normalization affects long-running queries completing success-
fully and query execution time. Rather unintuitively, higher normal
forms showed both better query completion success as well as query
execution times, explained by several predictors in the queries such as
the paths used to join tables, database size, and which predicates the
queries contained. These results have practical applications in logical
design of DSS databases, as the results imply that not only higher
normal forms eliminate data redundancy, they also speed up queries
and facilitate higher query completion success in long-running queries.

CRediT authorship contribution statement

Marin Fotache: Writing — review & editing, Writing — original
draft, Supervision, Project administration, Methodology, Formal anal-
ysis, Conceptualization. Marius-Iulian Cluci: Writing — review & edit-
ing, Software, Methodology, Formal analysis, Data curation, Conceptu-
alization. Toni Taipalus: Writing — review & editing. George Talaba:
Writing — review & editing, Software, Formal analysis, Conceptualiza-
tion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This research was supported by the Digital and Sustainability Tran-
sitions in Society (DigiSus) research platform.

Data availability

Manuscript contains a link to the data.

References
[1] S. Liu, A.H. Duffy, R.I. Whitfield, .M. Boyle, Integration of decision support

systems to improve decision support performance, Knowl. Inf. Syst. 22 (2010)

261-286.

W. Kent, Choices in practical data design, in: Proceedings of the 8th International

Conference on Very Large Data Bases, VLDB’82, 1982, pp. 165-180.

W. Kent, A simple guide to five normal forms in relational database theory,

Commun. ACM 26 (2) (1983) 120-125, http://dx.doi.org/10.1145/358024.

358054.

E.F. Codd, A relational model of data for large shared data banks, Commun.

ACM 13 (6) (1970) 377-387, http://dx.doi.org/10.1145/362384.362685.

E.F. Codd, Further normalization of the data base relational model, Data Base

Syst. 6 (1972) 33-64.

H. Lee, Justifying database normalization: a cost/benefit model, Inf. Process.

Manag. 31 (1) (1995) 59-67, http://dx.doi.org/10.1016/0306-4573(94)E0011-P.

M. Fotache, Why normalization failed to become the ultimate guide for database

designers? 2006, http://dx.doi.org/10.2139/ssrn.905060, SSRN, Available at

SSRN: https://ssrn.com/abstract=905060.

[2]

[3]

[4]

[5]

[6]

[71

13

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Information Systems 136 (2026) 102636

H.C. Smith, Database design: composing fully normalized tables from a rigorous
dependency diagram, Commun. ACM 28 (8) (1985) 826-838, http://dx.doi.org/
10.1145/4021.4024.

S. Kolahi, L. Libkin, An information-theoretic analysis of worst-case redundancy
in database design, ACM Trans. Database Syst. 35 (1) (2008) http://dx.doi.org/
10.1145/1670243.1670248.

C. Zaniolo, A new normal form for the design of relational database schemata,
ACM Trans. Database Syst. 7 (3) (1982) 489-499, http://dx.doi.org/10.1145/
319732.319749.

H. Darwen, C.J. Date, R. Fagin, A normal form for preventing redundant tuples
in relational databases, in: Proceedings of the 15th International Conference on
Database Theory, ICDT ’12, Association for Computing Machinery, New York,
NY, USA, 2012, pp. 114-126, http://dx.doi.org/10.1145/2274576.2274589.

K. England, G. Powell, Logical database design for performance, in: Microsoft
SQL Server 2005 Performance Optimization and Tuning Handbook, Digital Press,
2007, pp. 19-64, http://dx.doi.org/10.1016/B978-155558319-4/50003-5.

G.L. Sanders, S. Shin, Denormalization effects on performance of RDBMS, in:
Proceedings of the 34th Annual Hawaii International Conference on System
Sciences, 2001, pp. 1-9, http://dx.doi.org/10.1109/HICSS.2001.926306.

S.K. Shin, G.L. Sanders, Denormalization strategies for data retrieval from data
warehouses, Decis. Support Syst. 42 (1) (2006) 267-282.

T. Taipalus, Database management system performance comparisons: A system-
atic literature review, J. Syst. Softw. 208 (111872) (2024) http://dx.doi.org/10.
1016/j.js5.2023.111872.

D.B. Bock, J.F. Schrage, Denormalization guidelines for base and transaction
tables, SIGCSE Bull. 34 (4) (2002) 129-133, http://dx.doi.org/10.1145/820127.
820184.

C. Boscarioli, L. Torres, G.R. Kriiger, M.S. Oyamada, Evaluating the impact of
data modeling on OLAP applications using relacional and columnar DBMS, in:
2018 XLIV Latin American Computer Conference, CLEI, 2018, pp. 464-471,
http://dx.doi.org/10.1109/CLEI.2018.00062.

M. Poess, C. Floyd, New TPC benchmarks for decision support and web com-
merce, SIGMOD Rec. 29 (4) (2000) 64-71, http://dx.doi.org/10.1145/369275.
369291.

Transaction Processing Performance Council, TPC benchmark H (decision sup-
port) standard specification revision 3.0.1, 2022, https://www.tpc.org/TPC_
Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf.

M. Dreseler, M. Boissier, T. Rabl, M. Uflacker, Quantifying TPC-H choke points
and their optimizations, Proc. the VLDB Endow. 13 (8) (2020) 1206-1220,
http://dx.doi.org/10.14778,/3389133.3389138.

T.P.P. Council, TPC benchmark c standard specification revision 5.2, 2006,
http://www.tpc.org/tpce/spec/tpec_current.pdf.

Y. Guo, Z. Pan, J. Heflin, LUBM: A benchmark for OWL knowledge base
systems, J. Web Semant. 3 (2) (2005) 158-182, http://dx.doi.org/10.1016/
j-websem.2005.06.005, URL https://www.sciencedirect.com/science/article/pii/
$1570826805000132.

B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking
cloud serving systems with YCSB, in: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, Association for Computing Machinery, New York,
NY, USA, 2010, pp. 143-154, http://dx.doi.org/10.1145/1807128.1807152.

A. van Renen, V. Leis, Cloud analytics benchmark, Proc. VLDB Endow. 16 (6)
(2023) 1413-1425, http://dx.doi.org/10.14778/3583140.3583156.

B. Kim, K. Koo, U. Enkhbat, S. Kim, J. Kim, B. Moon, M2Bench: a database
benchmark for multi-model analytic workloads, Proc. the VLDB Endow. 16 (4)
(2022) 747-759.

ISO/IEC, ISO/IEC 9075-1:2016, "SQL - Part 1: Framework", 2016, URL https:
//www.iso.org/standard/63555.html.

ISO/IEC, ISO/IEC 9075-2:2016, "SQL - Part 2: Foundation", 2016, URL https:
//www.iso.org/standard/63556.html.

A. Bond, D. Johnson, G. Kopczynski, H.R. Taheri, Architecture and perfor-
mance characteristics of a PostgreSQL implementation of the TPC-E and TPC-V
workloads, in: Revised Selected Papers of the 5th TPC Technology Conference
on Performance Characterization and Benchmarking - Volume 8391, Springer-
Verlag, Berlin, Heidelberg, 2013, pp. 77-92, http://dx.doi.org/10.1007/978-3-
319-04936-6_6.

J. Kloke, J.W. McKean, Nonparametric Statistical Methods Using R, CRC Press,
Boca Raton, Florida, USA, 2015.

M. Aslam, Cochran’s Q test for analyzing categorical data under uncertainty, J.
Big Data 10 (147) (2023) http://dx.doi.org/10.1186/540537-023-00823-3.

L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees
(1st ed.), Hall/CRC, Wadsworth, New York, 1984, http://dx.doi.org/10.1201/
9781315139470.

W. Loh, Fifty years of classification and regression trees, Int. Stat. Rev. 82 (3)
(2014) 329-348, http://dx.doi.org/10.1111/insr.12016.

L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5-32, http://dx.doi.org/
10.1023/A:1010933404324.

J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a statistical
view of boosting (With discussion and a rejoinder by the authors), Ann. Statist.
28 (2) (2000) 337-407, http://dx.doi.org/10.1214/a0s/1016218223.

http://refhub.elsevier.com/S0306-4379(25)00122-X/sb1
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb1
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb1
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb1
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb1
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb2
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb2
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb2
http://dx.doi.org/10.1145/358024.358054
http://dx.doi.org/10.1145/358024.358054
http://dx.doi.org/10.1145/358024.358054
http://dx.doi.org/10.1145/362384.362685
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb5
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb5
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb5
http://dx.doi.org/10.1016/0306-4573(94)E0011-P
http://dx.doi.org/10.2139/ssrn.905060
https://ssrn.com/abstract=905060
http://dx.doi.org/10.1145/4021.4024
http://dx.doi.org/10.1145/4021.4024
http://dx.doi.org/10.1145/4021.4024
http://dx.doi.org/10.1145/1670243.1670248
http://dx.doi.org/10.1145/1670243.1670248
http://dx.doi.org/10.1145/1670243.1670248
http://dx.doi.org/10.1145/319732.319749
http://dx.doi.org/10.1145/319732.319749
http://dx.doi.org/10.1145/319732.319749
http://dx.doi.org/10.1145/2274576.2274589
http://dx.doi.org/10.1016/B978-155558319-4/50003-5
http://dx.doi.org/10.1109/HICSS.2001.926306
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb14
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb14
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb14
http://dx.doi.org/10.1016/j.jss.2023.111872
http://dx.doi.org/10.1016/j.jss.2023.111872
http://dx.doi.org/10.1016/j.jss.2023.111872
http://dx.doi.org/10.1145/820127.820184
http://dx.doi.org/10.1145/820127.820184
http://dx.doi.org/10.1145/820127.820184
http://dx.doi.org/10.1109/CLEI.2018.00062
http://dx.doi.org/10.1145/369275.369291
http://dx.doi.org/10.1145/369275.369291
http://dx.doi.org/10.1145/369275.369291
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
http://dx.doi.org/10.14778/3389133.3389138
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1016/j.websem.2005.06.005
https://www.sciencedirect.com/science/article/pii/S1570826805000132
https://www.sciencedirect.com/science/article/pii/S1570826805000132
https://www.sciencedirect.com/science/article/pii/S1570826805000132
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.14778/3583140.3583156
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb25
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb25
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb25
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb25
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb25
https://www.iso.org/standard/63555.html
https://www.iso.org/standard/63555.html
https://www.iso.org/standard/63555.html
https://www.iso.org/standard/63556.html
https://www.iso.org/standard/63556.html
https://www.iso.org/standard/63556.html
http://dx.doi.org/10.1007/978-3-319-04936-6_6
http://dx.doi.org/10.1007/978-3-319-04936-6_6
http://dx.doi.org/10.1007/978-3-319-04936-6_6
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb29
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb29
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb29
http://dx.doi.org/10.1186/s40537-023-00823-3
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1111/insr.12016
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1214/aos/1016218223

M. Fotache et al.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, Association for Computing Machinery, New York, NY,
USA, 2016, pp. 785-794, http://dx.doi.org/10.1145/2939672.2939785.

B. Candice, C. Anna, M.-M. Gonzalo, A comparative analysis of gradient boosting
algorithms, Artif. Intell. Rev. 54 (3) (2021) 1937-1967, http://dx.doi.org/10.
1007/510462-020-09896-5.

B. Efron, T. Hastie, Computer Age Statistical Inference: Algorithms, Evidence,
and Data Science, Cambridge University Press, 2016.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A
survey of methods for explaining black box models, ACM Comput. Surv. 51 (5)
(2018) http://dx.doi.org/10.1145/3236009.

M. Du, N. Liu, X. Hu, Techniques for interpretable machine learning, Commun.
ACM 63 (1) (2019) 68-77, http://dx.doi.org/10.1145/3359786.

P. Biecek, T. Burzykowski, Explanatory Model Analysis: Explore, Explain, and
Examine Predictive Models (1st ed.), Hall/CRC, Chapman and Hall/CRC, 2021,
http://dx.doi.org/10.1201/9780429027192.

R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian, Z. Wen, T.
Shah, G. Morgan, R. Ranjan, Explainable AI (XAI): Core ideas, techniques, and
solutions, ACM Comput. Surv. 55 (9) (2023) http://dx.doi.org/10.1145/3561048.
P. Probst, A.-L. Boulesteix, B. Bischl, Tunability: Importance of hyperparameters
of machine learning algorithms, J. Mach. Learn. Res. 20 (53) (2019) 1-32, URL
http://jmlr.org/papers/v20/18-444.html.

M. Kuhn, K. Johnson, Feature Engineering and Selection: a Practical Approach
for Predictive Models, CRC Press, Boca Raton, Florida, USA, 2019.

M. Kuhn, K. Johnson, Applied Predictive Modeling, Springer, New York, USA,
2013.

R Core Team, R: A language and environment for statistical computing, 2024,
https://www.R-project.org/.

14

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Information Systems 136 (2026) 102636

H. Wickham, M. Averick, J. Bryan, W. Chang, L.D. McGowan, R. Francois, G.
Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T.L. Pedersen, E. Miller, S.M.
Bache, K. Miiller, J. Ooms, D. Robinson, D.P. Seidel, V. Spinu, K. Takahashi, D.
Vaughan, C. Wilke, K. Woo, H. Yutani, Welcome to the tidyverse, J. Open Sour.
Softw. 4 (43) (2019) 1686, http://dx.doi.org/10.21105/j0ss.01686.

T.L. Pedersen, Ggforce: Accelerating ’ggplot2’, 2024, R package version 0.4.2,
https://CRAN.R-project.org/package=ggforce.

T. Wei, V. Simko, R package ’corrplot’ Visualization of a correlation matrix,
2021, URL https://github.com/taiyun/corrplot, (Version 0.92).

A. Kassambara, Rstatix: Pipe-friendly framework for basic statistical tests, 2023,
R package version 0.7.2, https://CRAN.R-project.org/package=rstatix.

1. Patil, Visualizations with statistical details: The ’ggstatsplot’ approach, J. Open
Sour. Softw. 6 (61) (2021) 3167, http://dx.doi.org/10.21105/joss.03167.

M. Kuhn, J. Silge, Tidy Modeling with R, O’Reilly, Sebastopol, California, USA,
2022.

M.N. Wright, A. Ziegler, Ranger: A fast implementation of random forests for
high dimensional data in C++ and R, J. Stat. Softw. 77 (1) (2017) 1-17,
http://dx.doi.org/10.18637 /jss.v077.i01.

T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell,
1. Cano, T. Zhou, M. Li, J. Xie, M. Lin, Y. Geng, Y. Li, J. Yuan, Xgboost: Extreme
gradient boosting, 2024, URL https://CRAN.R-project.org/package=xgboost, R
package version 1.7.7.1.

P. Biecek, DALEX: Explainers for complex predictive models in R, J. Mach. Learn.
Res. 19 (84) (2018) 1-5, URL http://jmlr.org/papers/v19/18-416.html.

P. Biecek, H. Baniecki, Ingredients: Effects and importances of model ingredients,
2023, URL https://CRAN.R-project.org/package=ingredients, R package version
2.3.0.

http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1007/s10462-020-09896-5
http://dx.doi.org/10.1007/s10462-020-09896-5
http://dx.doi.org/10.1007/s10462-020-09896-5
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb37
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb37
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb37
http://dx.doi.org/10.1145/3236009
http://dx.doi.org/10.1145/3359786
http://dx.doi.org/10.1201/9780429027192
http://dx.doi.org/10.1145/3561048
http://jmlr.org/papers/v20/18-444.html
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb43
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb43
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb43
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb44
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb44
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb44
https://www.R-project.org/
http://dx.doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=ggforce
https://github.com/taiyun/corrplot
https://CRAN.R-project.org/package=rstatix
http://dx.doi.org/10.21105/joss.03167
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb51
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb51
http://refhub.elsevier.com/S0306-4379(25)00122-X/sb51
http://dx.doi.org/10.18637/jss.v077.i01
https://CRAN.R-project.org/package=xgboost
http://jmlr.org/papers/v19/18-416.html
https://CRAN.R-project.org/package=ingredients

	The effects of database normalization on decision support system performance
	Introduction
	Theoretical background
	Normalization theory
	Database performance assessment

	Research method
	Logical database setup
	Physical database setup
	Benchmark queries
	Variables
	Data analysis

	Results
	Higher normal form facilitates queries completing successfully
	Normal form is ranked as the second most important predictor for queries completing successfully
	Higher normal form facilitates faster query execution time
	Normal form is ranked as the most important predictor for query execution time

	Discussion
	Practical implications
	Limitations and threats to validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

