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Abstract. Vector databases are a critical component in modern sys-
tem infrastructures. In this study, we discuss the principles behind vec-
tor database management systems, with a focus on their features, the
concept of vector embeddings, and similarity search mechanisms. Fur-
thermore, we examine the synergies between vector databases and lan-
guage models, which rely on vector embeddings for semantic search
and retrieval-augmented generation. We also discuss the challenges aris-
ing from the integration of language models with vector databases.
Through this discussion, we aim to provide early-stage researchers with
an overview of the integration of vector databases and language models.
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1 Introduction

Language models, despite revolutionizing natural language processing, face well-
known limitations: they can hallucinate false facts [5], struggle with out-of-date
knowledge, and incur escalating costs as their parameters grow [8]. Integrating
language models with vector databases offers a compelling solution to these
issues [8].

In the retrieval-augmented generation (RAG) paradigm, a language model’s
parametric knowledge is supplemented with non-parametric memory from an
external vector database. This synergy enables the model to fetch relevant infor-
mation on the fly, which grounds the responses in up-to-date data and poten-
tially reduces hallucinations. Early work on k-nearest-neighbor language models
demonstrated that augmenting a neural language model with a vector-indexed
datastore of examples dramatically improved the model’s ability to recall rare
factual patterns, consequently reducing perplexity on long-tail content without
model re-training [10]. Modern RAG systems build on this idea by using neu-
ral dense embeddings to retrieve semantically relevant documents which the
language model then uses to produce more informed outputs [11]. In specific
knowledge-intensive tasks, retrieval augmentation has enabled smaller language
models to approach the performance of substantially larger models. For exam-
ple, the RETRO model has been shown to achieve comparable performance to
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GPT-3 on certain knowledge-intensive benchmarks, while using 25 times fewer
parameters [2].

In this study, we discuss system-level underpinnings of synergies similar to
the one above, focusing on how vector databases support neural retrieval for
language models. We examine dense embedding generation, indexing and stor-
age in vector databases, query latency considerations, integration pipelines for
language models and vector databases, the current challenges, and emerging
research opportunities. The discussion strives for domain-agnosticism, and tar-
gets data management and retrieval aspects relevant to many applications.

2 Background Concepts
2.1 Vector Embeddings

Vector embeddings are numerical representations of data elements. Data objects
such as words, images, or nodes in a graph can be mapped into continuous
vector spaces. These embeddings capture semantic or structural relationships,
and allow for the search of vectors that are similar to (but not the same as)
another vector. In this study, we use two-dimensional vectors for illustration
purposes and simplicity, but such vector may have dimensions (i.e., elements)
in the hundreds or thousands. As an example, Fig. 1a shows the vectors of two
plays, PA and PB, in a two-dimensional vector space. The elements of the vectors
correspond to the amount of comedy and tragedy in the plays. Based on the
positions of the vectors in the vector space, we can see that play PA is relatively
comic and not very tragic, and that play PB is the opposite.

Using text data as an example of creating vector embeddings from data
objects, the creation of vector embeddings is grounded in the distributional
hypothesis, which posits that linguistic items with similar distributions have
similar meanings. This is the basic principle of models like Word2Vec, which
learns embeddings by predicting a word based on its context, or predicting sur-
rounding words given a target word [15]. Such models utilize large corpora to
capture co-occurrence statistics, resulting in vector spaces where semantic rela-
tionships are reflected in geometric proximity. As an example, when searching for
“vitamin deficiency symptoms”, a suitable embedding model might retrieve doc-
uments about iron deficiency and B12 anemia. A poor embedding model might
return blog posts about “vitamin shopping” or “best supplements in 2025”. All
these are technically close, but not all are semantically useful.

Different embedding techniques are also better suited for different geometric
proximity calculations (cf. Figure 1b). Mismatch between vector geometry and
similarity function can lead to reduced effectiveness. Furthermore, Embeddings
trained on in-domain data (e.g., biomedical text for a health app) drastically
improve recall (i.e., finding all relevant items) and precision (i.e., avoiding irrel-
evant ones).
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Fig. 1. Two-dimensional vector space with two vectors and two methods of measuring
similarity: Euclidean distance and cosine similarity; adapted [19]

2.2 Vector Databases

Vector databases, or rather vector database management systems (VDBMS),
can provide the means of efficiently storing vectors and metadata associated
with them in forms of different vector indices. As with data objects other than
vectors, indices form the basis of efficient data retrieval. Additionally, VDBMSs
can provide different ways of measuring vector similarity. Commonly used meth-
ods are Euclidean distance, cosine similarity, and inner product. The two former
are illustrated in Fig. 1b. One can likely see the implications of different similarity
search methods in the figure.

In addition to vector-specific indices and searching, different vector databases
provide different functionality, ranging from software libraries (e.g., FAISS [9]),
to fully-fletched DBMSs with role-based access control, concurrency, and repli-
cation and sharding (e.g., Milvus [22]). Several DBMSs following some other
database paradigm have also adopted features for vector data management, for
example PostgreSQL, Redis, and MongoDB. Currently, the maximum number
of vector dimensions in these systems are measured in thousands, while dedi-
cated systems such as Milvus, Pinecone, Weaviate, and Manu [4] can manage
dimensions in the tens of thousands.

2.3 Language Models

Simplified, language models function by converting textual input into high-
dimensional vector representations (e.g., R7%®), which enables them to cap-
ture semantic relationships and contextual nuances. These models process input
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within a fixed-size context window, which defines the maximum number of tokens
the model can consider at once. Expanding this context window enhances the
model’s ability to understand longer inputs. However, computational complexity
of standard self-attention in transformers is O(n?) with respect to the sequence
length n. Newer architectures such as Longformer [1] are specifically designed to
reduce this cost for long-context scenarios.

Training and fine-tuning language models are typically resource-intensive
processes that require substantial computational power and time. For exam-
ple, training large-scale models can incur costs running into millions of dollars,
making it impractical for many applications. To mitigate these challenges, vector
databases are employed to provide external context to language models without
the need for retraining. By storing precomputed vector embeddings of relevant
data, these databases enable efficient retrieval of relevant data objects based on
semantic similarity. When a prompt is issued, the system retrieves the most rel-
evant vectors from the database and incorporates them into the model’s context
window, enhancing the model’s responses with up-to-date and domain-specific
information.

3 Supplementing Retrieval with Vector Databases

RAG refers to techniques that combine an language model with a retrieval mech-
anism to incorporate external knowledge. A typical RAG system first encodes
a user query into a vector representation, then performs a similarity search in
a vector database of background documents, and finally feeds the top-ranked
retrieved documents (or their content) into the language model’s context before
generating the answer [11] (cf. Figure 2). This pipeline effectively gives the lan-
guage model access to an external knowledge base in real-time. The approach
was introduced in knowledge-intensive NLP tasks [11], showing that a language
model (BART in their case) augmented with a learned retriever outperformed
fully-parametric models on open-domain QA benchmarks.

Subsequent systems have strengthened this paradigm. For example, Atlas [6],
a pretrained retrieval-augmented model achieved higher accuracies on QA with
50 times fewer parameters than a 540 billion-parameter PaLM model by carefully
training the retriever and generator together on knowledge tasks. Another line
of work from the database community treats the vector store as a reliable long-
term memory for language models [24]: rather than packing all world knowledge
into model weights, one can store factual data in a vector database and let the
model retrieve it as needed [8]. This design not only improves factual accuracy,
but also allows updating the knowledge base without retraining the language
model, which is a major advantage for keeping up with evolving information.

In practice, retrieval augmentation has been shown to mitigate hallucina-
tions in several benchmark tasks, provided the retrieved information is relevant
and accurate [8]. Even at inference time, an language model can be queried in a
semi-open-book manner. That is, in experimental setups, frozen language models
have demonstrated improved rare-token prediction accuracy by retrieving near-
est neighbor tokens from a vectorized representation of the training corpus [10].
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Across the studies mentioned, a clear picture emerges: dense neural retrieval is
a key enabler for making language models more knowledgeable, accurate, and
efficient by offloading memory to an external vector database.

"Find songs about the moon." [0,1,-3...] "Find songs..." + top-k documents

NL prompt > vectorization J—' LM

similarity search

retrieval generation

Fig. 2. The general principle of retrieval-augmented generation: the vectorized natural
language (NL) prompt is used for vector similarity search to find n closest documents,
which are then used in tandem with the natural language prompt for the language
model (LM), enhancing the prompt with context

4 Vector Storage and Retrieval

Central to neural retrieval is the use of dense embeddings. Instead of sparse key-
word matches, RAG pipelines represent text as high-dimensional vectors (hun-
dreds or even thousands of dimensions) generated by transformer encoders [21]
or language model embeddings. These vectors capture semantic similarity, mean-
ing that a query vector will lie close (e.g., in cosine or Euclidean distance) to
vectors of documents on the same topic to retrieve relevant information even
when there are no shared keywords [2]. Storing and searching through millions
or billions of such vectors is the core function of a vector database. This task is
non-trivial: the vectors live in a continuous space lacking obvious structure, and
brute-force search would be prohibitively slow, as each distance computation
involves hundreds of multiplications.

Instead, approximate nearest neighbor (ANN) algorithms are used to index
the embeddings and accelerate queries. One popular approach is building a small-
world graph index (HNSW, or hierarchical navigable small world), where each
vector is a node connected to its neighbors in such a way that a greedy graph
traversal yields a near-optimal set of results [14] (cf. Figure3). Malkov and
Yashunin’s HNSW method exemplifies this, allowing sub-millisecond retrieval
on million-scale datasets with high recall by navigating a hierarchical graph
structure instead of exhaustive scanning [14].

Another class of methods uses vector quantization to compress and partition
the space. Product quantization (PQ) compresses each vector into a short code
by splitting the space into subspaces 4AS dramatically reducing memory usage
and enabling fast coarse search at some cost to accuracy [7]. Modern vector
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Fig. 3. Basic operating principle of an HNSW index: an arbitrary number of layers
of indices are used to limit the search space; vector search starts at the top layer
(blue arrow) from a random vector; each vector stores a list of pointers to a small
set of neighbor vectors (red lines); ANN is used to find the most suitable match in a
relatively small vector space, which then points to the next layer; again ANN is used
in a subset of vectors to find the most suitable match, which is again followed to find
the actual search results (Color figure online)

databases often combine different techniques: for example, the FAISS library
[9] provides inverted file indexes with product quantization and HNSW graphs,
supporting billion-scale similarity search on GPUs [9]. SPANN exemplifies a two-
tier index architecture optimized for billion-scale corpora, although such systems
remain more common in research contexts than production use today [3]. The
common goal of these structures is to balance recall (retrieving true nearest
neighbors) with efficiency (time and computer memory).

In practice, an ANN index can retrieve top-k neighbors from a million-vector
set in just a few milliseconds with 95% recall, a sweet spot for many language
model augmentation scenarios. Vector databases incorporate these algorithms
under the hood, managing the indexing, compression, and search operations
transparently. For instance, Milvus [22] is an open-source vector DBMS that
offers multiple index types and automatically chooses an index depending on data
scale and latency requirements. By leveraging such indices in optimized settings,
vector databases can support similarity queries with latencies approaching those
of traditional keyword search engines.

Finally, many VDBMSs support hybrid search or hybrid operators, meaning
that in addition to the query vector, a set of more traditional conditions are
imposed on the metadata, such as price > 50 [18]. This limits the vector search
to a subset of vectors in the vector space. Vector indices can also be constructed
in subsets of vectors (i.e., shards), and metadata used in assigning certain vectors
to certain shards, e.g., electronics to one shard, utilities to another.
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5 Performance Considerations

Building a high-performance vector database-backed language model pipeline
requires careful system-level design. One consideration is the latency budget
for retrieval. In interactive applications (e.g. a question-answering chatbot), the
vector lookup must be relatively fast not to bottleneck the language model’s
response. A typical vector search on tens of thousands of embeddings can execute
in a few milliseconds with an optimized ANN index in memory [3]. However, if
the knowledge corpus is very large (e.g., hundreds of millions of entries), keeping
the entire index in RAM may be unfeasible. In such cases, systems turn to disk-
based or distributed solutions: SPANN, for example, demonstrates that a hybrid
disk/RAM index was shown to serve a billion-scale vector corpus with only 64GB
of memory, achieving query latencies on the order of tens of milliseconds with
high recall [3].

Another approach is to exploit hardware parallelism. FAISS and other
libraries can batch distance computations to utilize GPUs efficiently [9], yield-
ing significant speedups for large query loads. The vector database acts as the
orchestrator to route similarity computations to the appropriate hardware and
to manage caching of vector data. Caching is indeed a valuable optimization in
cases when certain queries or documents are frequently accessed, as the vector
database can cache their embeddings or results in faster storage. In an end-to-
end RAG pipeline, there is also a trade-off between retrieval time and generation
time. Language model inference is typically the slower component (especially for
large language models), so one might tolerate, say, 50 ms of retrieval delay from
the vector database, if it substantially improves the quality of a generation that
takes 2s.

System designers often overlap retrieval with other stages (e.g. start the lan-
guage model on the user query while concurrently fetching documents, then con-
catenate results when ready) to hide latency. The integration between language
model and vector database can be tight or loose. A tight integration might use
the language model’s internal representation to continually fetch new informa-
tion mid-generation (iterative retrieval), whereas a loose integration uses a fixed
retrieved set obtained before generation. Many practical implementations use an
orchestration layer (such as a middleware or libraries like LangChain) to manage
the sequence. That is, embed the query, query the vector store, retrieve top-N
texts, and finally construct an augmented prompt for the language model. Each
interface crossing between the language model and the database incurs overhead,
so some research explores training the retriever and generator jointly so that the
two components hand off information more fluidly [2].

Ensuring scalability requires monitoring how retrieval performance scales
with data size. Vector databases often support sharding or partitioning of the
index across nodes to handle very large corpora, with a slight loss in recall
due to partition boundaries [3] (cf. Figure4). Another issue is consistency in
distributed settings: when multiple language model instances share access to a
vector database, inserts to the database may need to be immediately visible to
all models, which calls for transactional or eventually-consistent replication pro-



Vector Databases and Language Models: Synergies and Challenges 199

similar
partition 1 partition 2

Fig. 4. Similar vectors near the partition boundaries can be missed if only a part of
the partitions are searched

tocols in the vector database. Such requirements pose limitations to the selection
of the vector database.

data sources encoders alignment
audio id: 18C9ab0e25...
.mp3 storage title: Argent Moon

time: 26-09-2025

image type: audio
.Jjpg > > > payload: /data/am.mp3

embedding: [0,-0.2,3,...]
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Fig. 5. Vectorization allows the storage and querying of multi-modality data in a sin-
gle format: vectors; multi-modality data such as images and text are encoded with
respective encoders into vector embeddings, these embeddings are then aligned into a
single vector space, ensuring that vector embeddings of similar data objects are close to
each other; the vectors are then stored into a vector database; some techniques such as
CLIP and CLAP already provide the alignment without need for additional processing
though other software libraries or models

6 Future Research

Beyond text, vector databases can store embeddings of images, audio, code,
graphs, etc. An exciting current research direction is enabling language models
to retrieve not just text documents but other modalities (images or knowledge
graph substructures) to ground their understanding (Fig.5). Multi-modality
poses additional challenges to already recognized limitations in embedding mod-
els, data quality, and retrieval accuracy [23]. Early research explored unified
systems that support hybrid queries combining vector similarity with structured
constraints (e.g. temporal or graph-based conditions) [3]. In this regard, vector
databases contribute to addressing challenges reminiscent of those seen in multi-
model databases, such as the absence of a unified query language, which have
been discussed in prior work [13].
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When an language model’s internal knowledge conflicts with the retrieved
data, the result can be an inconsistent or confusing answer. Mechanisms to detect
and resolve these conflicts are needed. One idea is to train language models to
defer to retrieved evidence in critical domains, i.e., effectively learning a form
of truth alignment with the external database. Another aspect is keeping the
database in sync with the world: unlike static model weights, a vector store can
be updated continuously. Techniques for incremental indexing (i.e., updating
indexes without full rebuilds) and for handling concept drift (i.e., when new
data shifts the embedding space) will be crucial for systems where real-time
consistency is required [3].

From hardware perspective, GPUs already excel at vector calculations due to
parallelism and floating-point performance, yet there is interest in quantized or
compressive transformers that integrate vector search natively, as well as hard-
ware like dedicated ANN accelerators [17]. In our opinion, there is a need for more
comprehensive benchmarks that evaluate the combined system of a language
model and a vector database holistically. While components are individually
benchmarked (e.g. ANN benchmarks for vector search [9], and natural language
processing benchmarks for language model accuracy), the field lacks standard-
ized tasks that measure end-to-end performance, including response quality and
latency under varying loads, similarly to relational DBMS benchmarking. Devel-
oping such benchmarks would drive research into more efficient and effective
integration.

Privacy and security pose additional research avenues. Embedding textual
data could leak private information, and external retrieval might introduce
adversarial inputs to the language model. Emerging work has begun to explore
privacy-preserving vector retrieval mechanisms, such as secure ANN and filtered
retrieval, which are likely to become increasingly important as such systems are
adopted in sensitive domains. It remains an open questions whether this is a
training-related challenge, whether such privacy issues should be ensured with
guardrails outside model training, or perhaps with hybrid queries, which account
not only similarity search but also search conditions on metadata (cf. right-hand
side of Fig.5).

Finally, even though vectors are not a novel way of storing data, the field has
advanced rapidly in terms of popularization and usability of different tools and
systems. In our opinion, vector databases and adjacent technologies are more
than ripe for more applied research in different and exciting domains. Although
we have seen concepts are opportunities in fields such as healthcare [16], cyber
security [20], and finance [12], current vector data management techniques pro-
vide a vast frontier of opportunities that now only lacks more imagination.

7 Conclusion

Vector databases and large language models together form a powerful architec-
ture for generative artificial intelligence. The dense neural retrieval capabilities
of vector databases complement the generative features of language models and
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enable systems that not only produce coherent language, but reason over timely,
model-external knowledge. In this study, we reviewed how dense embeddings
serve as the lingua franca between language models and vector database, and
how efficient indexing and storage make real-time retrieval feasible at scale. Key
system challenges such as reducing query latency, building robust integration
pipelines, and ensuring scalability have seen rapid progress, yet continue to face
challenges. As future research addresses the outlined directions which span from
better indexes and multi-modal retrieval to alignment and security, we can expect
language models to become more reliable and versatile by leveraging the right
database systems behind the scenes. This interdisciplinary synergy connects the
advances in data management and language models.
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