
Vector Representations of Multi-modal
Data

Toni Taipalus1(B) and Jiaheng Lu2

1 Tampere University, Tampere, Finland
toni.taipalus@tuni.fi

2 University of Helsinki, Helsinki, Finland
jiaheng.lu@helsinki.fi

Abstract. Multi-modal data processing is about exploring the interac-
tions between various types of data to produce a more comprehensive or
accurate understanding of a phenomenon such as health, emotions, or cir-
cumstances. Vectors as data representation methods have emerged as an
important component in modern data management, driven by the grow-
ing importance for the need to computationally describe multi-modal
data such as texts, images and video in various domains. In this tuto-
rial, we provide a fundamental introduction on vector representations of
multi-modal data, which includes intra-modal representation and inter-
modal representation. The goal of our tutorial is to provide a centralized
and condensed introduction regarding theories and applications of multi-
modal data vectorization technologies for both database researchers and
practitioners. We also discuss how to use vector database management
systems for the management of multi-modal data.
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1 Introduction

Multi-modality and vector databases have both gained substantial momentum
in both research and practice [13,21]. Multi-modality means several modalities.
These modalities can include verbal (such as spoken language), visual (such as
images or videos), auditory (such as sounds, noises or music), and spatial (such
as physical space or arrangement), and efficiently utilizing multi-modality can
achieve, for example, more accurate recommender systems [23] and richer med-
ical diagnoses [1]. Vectorization of data, on the other hand, has the potential
for more efficient storage, as well as representing data objects of different nature
with similar terms, i.e., vectors. By combining the advances in the fields of both
multi-modality data and vector databases, managing multi-modality data can
be fundamentally more efficient, and reach new use-cases in various multidisci-
plinary domains.

Tutorial Overview: In this tutorial, we will discuss five modals of data: text,
image, audio, video and time-series data. For each modal, we will present their
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respective vector representation method, and review cases for the combination
of multiple modal data, including text+image, text+audio, image+audio, and
text+image+audio. For each combination of modals, we will review the algo-
rithms for vector alignment and representation fusion. In this tutorial, we will
also show a fundamental introduction to applications of using multi-modality
data with vector databases. Our tutorial discusses the basics behind vector
database management systems and the process and unification of vectorization,
as well as open problems and future opportunities of the intersection of multi-
modality and vector databases.

The learning outcomes of this tutorial are to (i) understand the need behind
vectors and multi-modality data management in today’s landscape, (ii) under-
stand how different data objects can be vectorized and why vectorization is useful
for multi-modal data, (iii) learn different methods to unify and align vector rep-
resentations for multi-modal data, and (iv) know of the current challenges and
opportunities in the intersection of multi-modality and vector databases.

Intended Audience: This tutorial is designed for a broad audience, includ-
ing academic researchers, students, industrial developers, and practitioners, who
seek to understand vector representations for multi-modal data, explore how
the convergence of vector databases and multi-modality enhances data manage-
ment, and examine current challenges and future opportunities in inter-modality
vectorization. A foundational understanding of databases and machine learning
concepts is required to follow the tutorial effectively.

Related Tutorials: We are aware of tutorials which are tangential to this
work. A SIGMOD’24 tutorial [15] gives a general survey on vector database
management systems and vectorization techniques. A RecSys’21 tutorial [23]
shows how multi-modality can relieve the challenge of sparsity of vectors in rec-
ommender systems. Finally, a 2020 Information Fusion tutorial [25] discusses
multi-modality emotion recognition using a medical dataset.

Contributions: To the best of our knowledge, this is the first tutorial to dis-
cuss the methods of vectorization and use-cases of multi-modal data processing
through vector databases. While previous tutorials have described both vector
database management systems and multi-modality separately, this intersection
has received no scientific tutorials, especially from a general perspective. The
topic of vector databases and multi-modality covered in this tutorial may help
industry professionals, researchers, educators, and students in understanding
how vector databases can be used in multi-modality use-cases now and in the
future, and what challenges this intersection currently faces.

2 Intra-modal Vector Representations

Vectors can be used to represent various types of data, including text, audio,
video, images and time-series data. By vectorizing the features of data objects
such as images, various features are given numerical representations. Vectors cre-
ated from various data objects can be relatively efficiently stored and compared
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[21]. It is highly context-dependent on which features of data objects are vector-
ized, as vectorizing all features is rarely feasible or even possible. A vectorized
data object is often called a feature vector or a vector embedding.

Text: Feature vectors have been used to enhance search accuracy by under-
standing synonyms and contextual relevance [16], in classifying documents into
predefined categories for spam detection and sentiment analysis [5], for iden-
tifying and classifying entities within texts using contextual embeddings, for
improving machine translation quality by representing words and phrases in a
continuous vector space, and for grouping similar documents together using their
vector representations for more accurate information retrieval [18].

Image: Vector representations generated by convolutional neural networks
(CNNs) have been utilized in finding similar images in a database and for clas-
sifying images into categories by using the CNN features as inputs to a classi-
fier [11]. Furthermore, vectors can be used in identifying objects within images
using embeddings to represent features, and for generating descriptive captions
for images by combining image embeddings with language models [6].

Audio: Vectors can be used in speech recognition by simply converting speech
to text using audio embeddings such as Speech2Vec [2]. Vectors can also be
used in speaker identification based on their unique voice characteristics cap-
tured in embeddings [9], song recognition, sound classification [10], and music
recommendations.

Video: Converting a video into a vector representation involves extracting mean-
ingful features from selected frames and encoding them as vectors. This process is
useful for various tasks such as video classification and understanding. For exam-
ple VideoBERT [19] passes each frame through a pre-trained CNN to obtain a
feature vector from a fully connected or global pooling layer. The final result is
a single vector representing the video.

Time-Series: Time series data refers to a sequence of data points collected at
successive points in time, typically at regular intervals. Converting time series
data into a vector representation involves various feature extraction techniques
including statistical methods, wavelets, and embedding-based approaches [8].

Fig. 1. Representations alignment for text and image
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Fig. 2. A general process of storing multi-modality data into a common vector space,
and into a vector database management system with an example of healthcare data;
illustrated software, libraries, and techniques such as BERT and UNITER are examples;
multi-modality transformers (abbreviated m-m transformers above) are used to ensure
that multi-modality data objects are stored into a common vector space, which can
subsequently be queried by a doctor using only textual input

Fig. 3. Various approaches for unifying inter-modality vector representations

3 Inter-modal Vector Representations

In inter-modality contexts, vector representations can be used in tandem with
multiple modals. In this section, we describe the cross-modal alignment between
the embedding spaces of multiple modalities (such as text+image, cf. Fig. 1)
learned from corpora of their respective modalities.

Text and Image: Image captioning inherently combines visual data with tex-
tual data. Visual features extracted from images and the sequential nature of
text generation can be integrated into a unified model. Furthermore, this enables
cross-modal retrieval, as querying by text can retrieve images and vice versa, as
both text and images are embedded to a common embedding space [4]. Addi-
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tionally, this approach enables answering questions about images when the cross-
modal embeddings are passed to a language model.

Text and Audio: By aligning audio embeddings with text embeddings, speech
can be converted to text and vice versa. This allows, for example, auto-
mated summarization of long speeches such as podcasts. Cross-modal alignment
between embedding spaces of speech and text learned from corpora of their
respective modalities in an unsupervised fashion has been of interest in scien-
tific works [3]. The proposed framework learns the individual speech and text
embedding spaces, and attempts to align the two spaces via adversarial training
and a refinement procedure.

Image and Audio: For audio-image vector representations, several CNN-based
feature extractors have been proposed, including EfficientNet [22] and Inception
ResNet [20]. By aligning audio and visual content, vector embedding can be used
in audiovisual synchronization, for example for synchronizing lip movements with
speech. Multi-modality through image and audio can also be used to enhance
emotion recognition by considering both facial or bodily expressions as well as
audio cues [25].

Text, Image and Audio: The combination of text, image, and audio data into a
common embedding space enables multi-modal search engines which can retrieve
results across several types of data objects. Similar embeddings can also be used
in multi-modal recommender systems [23]. This allows content recommendations
which are not based on data objects of similar type. That is, the recommender
system may suggest, e.g., text documents based on videos watched, and these
recommendations are not limited to metadata, but to analyzed (and vectorized)
content. Additionally, inter-modality with feature vectors can serves as a basis
for both inputs and outputs of digital assistants. Fig. 2 illustrates a general
example use-case and example techniques for storing multi-modal data objects
into a vector database, using a common vector space.

4 Methods for Unifying Inter-modality Vectors

In this section, we introduce basic approaches on how to unify different vector
representations for multi-modal data to integrate and reconcile vectors from
different modalities with a representation that can capture the essence of several
modalities simultaneously. Figure 3 illustrates various approaches to produce a
unified vector representation.

Embedding Alignment: Models are trained with the aim of learning a joint
embedding space where representations from different modalities are embedded
such that similar instances across modalities are closer together in the space,
and the distance between dissimilar instances is maximized. This is typically
achieved using a contrastive learning objective or a triplet loss function [24]. For
example, Fig. 1 illustrates the vector alignment for text and image data in a joint
space.
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Agent-Based Alignment: Another method of dealing with multi-modality
data is simply converting all data objects to a single modality, e.g., textual
descriptions, which are then vectorized. This approach circumvents the chal-
lenge of vectorizing multi-modality data objects directly into the same vector
space, as the vectorization process is only applied to text. We call this an agent-
based alignment, rooted in the presumption that different models (or agents) are
responsible for creating feature vectors for different data objects. *-to-text mod-
els such as CLIP [17] with GPT for image-to-text, BART [12] for text-to-text
(e.g., summarizing and translation), and Whisper for audio-to-text have already
shown substantial results in their respective tasks.

Fusion Techniques: These techniques include early fusion and late fusion [26].
Early fusion involves concatenating or stacking vectors from different modalities
into a single vector representation before inputting them into a neural network,
which outputs the final vector to be stored in a vector database. These vectors
can be high-dimensional, making it more difficult for the model to learn effi-
ciently. In contrast, late fusion combines the outputs from models trained sep-
arately on each modality, which can involve averaging or weighting predictions
from the individual models to generate a final representation. The challenges in
late fusion are typically related to relatively low coupling between the modalities.

Graph Representation: Construct a graph where nodes represent instances
and edges capture relationships or similarities between instances across different
modalities [14]. Graph neural networks can then be applied to learn a unified
representation by aggregating information from the graph.

5 Vector Databases for Multi-modal Data

After relevant data objects have been vectorized, these feature vectors can be
stored for subsequent use by, e.g., customer-facing applications. These applica-
tions, such as the healthcare-related systems described in Fig. 2, may either use
libraries, a dedicated vector DBMS, or a more general-purpose DBMS to index
and query the vectors. Each of these approaches relieve the need to implement,
e.g., vector indexing techniques such as product quantization or hierarchical nav-
igable small world, and have distinct use-cases.

Vector management-dedicated software libraries such as FAISS [7] typically
offer different ways of indexing vectors and querying them with similarity search.
Typically, this approach is often computationally fast, yet provides little more
for effective data management [21]. Dedicated vector DBMSs such as Milvus
or Chroma, on the other hand, have been built from the ground up to serve
the needs of vector data management. This relatively novel approach typically
supports several vector index types, and strives for interoperability between the
DBMS and other system components. Finally, more general DBMSs such as
PostgreSQL, SQLite, MongoDB, Cassandra, and Redis also support vector data
management, some through third party extensions. This approach potentially
adds data management features such as concurrency control, access control,
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ACID-compliance, back-up and recovery, and an expressive query language to
support vector data management. For example, with PostgreSQL’s pgvector
extension, a software developer may query vectors using SQL, as well as utilize
vector metadata in queries. For example, a query with a query vector can be
complemented with more traditional SQL expressions.
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