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Abstract—Data warehousing is a technique for integrating data
from several source systems to enable pervasive data analytics.
Data updates in the source systems result in data refreshes
down the data stream. These data refreshes are potentially
both computationally and financially costly, even if the refreshed
data is not utilized before the next refresh. In this study,
we present an accessible approach for selecting tables, views
and materialized views for data refreshes in situations where
entities have complex dependencies. While such solutions have
been proposed in scientific literature in the past, their practical
applications have been few and far between. We speculate that
this gap between theory and practice stems from the highly
theoretical presentation of such solutions. In this study, we aim
to address this gap from a practice-oriented industry perspective.
Utilizing this approach may, depending on the structure of the
database and how it is used, present considerable improvements
for the efficient utilization of, e.g., computation and networking
resources, as well as energy efficiency.

Index Terms—data warehouse, efficiency, data ingestion, data
loading, data engineering

I. INTRODUCTION

Data warehousing is a technique for integrating data from
several organizational source data systems such as human
resources, customer relationship management, and end-user
facing services, to a single environment where data may be
analyzed. The primary steps in this integration of data from
several sources are often called extract, transform and load
(ETL). These steps attempt to ensure that the data objects are
indeed correct, they are organized in a way that serves data
analytics, and there is only one version of crucial data objects
[1].

Data loads from the source systems into the data warehouse
can be computationally expensive, as the data objects are
typically sent over a network and inserted into the data
structures of the data warehouse. Consequently, this often
results in updating several database entities such as tables
and materialized views. Updating database entities periodically
can result in wasteful use of computing resources, if these
entities are not used (e.g., in data analytics queries) between
data updates [2]. This is especially true in the cases when the
load rebuilds a database entity from scratch instead of merely
refreshing what has changed. In practice, this kind of waste is
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common: data loads are frequently scheduled daily or weekly,
regardless of actual data usage.

In this study, we demonstrate an approach intended for
reducing unnecessary data loads in database entities with
complex dependencies with each other. In short, the approach
includes automatically selecting a minimal subset of entities
to update for the given use case. This facilitates more cost-
effective data warehousing, especially in cases where database
entities have complex dependencies. Such cases may be com-
mon in domains where the data warehouse is utilized by
many stakeholders with different data needs. Our contribution
is to simplify and propagate the solution from a practical
perspective, in hopes of communicating the importance of
implementing such solutions widely in practice.

The rest of this study is structured as follows. In Section II,
we examine the current state of research on data refreshing
approaches, and position our study with prior works. In Sec-
tion III, we present the approach for database entity selection
and its constituents. Section IV contains the practical and
theoretical implications, and Section V concludes the study.

II. BACKGROUND
A. Database entities in data warehouses

In the scope of this study, the data warehouse architecture
consists of source systems, a staging area, the enterprise data
warehouse, and data marts (cf. Fig. 1). The ETL process
extracts new data objects from source systems which can
each follow a different data model, have conflicting ways of
storing similar data objects, and have distinct nomenclature
[3]. These data objects are then loaded into a staging area,
which is often a set of temporary data structures. Next, the
data objects are transformed, i.e., cleaned, organized, and
standardized, before they are loaded into the enterprise data
warehouse data structures, which are often structured for data
analytics or some other integration purpose [4]. Once the data
is successfully loaded into the enterprise data warehouse, the
staging area is typically cleared out to free up space for the
next ETL cycle. A typical data warehouse environment also
includes one or more data marts. Data marts are either physical
or logical ways of separating subsets of the data warehouse
for different stakeholders.

Data warehouses, especially those built upon relational
database technologies, typically have at least three separate



source systems staging area enterprise data warehouse data marts
AP stage edw data mart | | data mart
entity X entity 1 —J  entity A entity D
EN T T
| ! |
stage edw edw data mart data mart
entity Y entity 2 entity 4 entity B entity E
T = ES
- |
stage edw data mart
entity Z entity 3 entity C

Fig. 1. General data warehouse architecture in the scope of this study; arrows represent data flow from source systems to data marts; dashed arrows represent
foreign key dependencies from parent entity to foreign key; the arrows may also be interpreted as load order dependencies, e.g., the data mart entity D depends
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logical ways to store the data, i.e., database tables, views
and materialized views. We use the term database entity
collectively for all three and other possible similar logical
data structures. These three types of entities have some dif-
ferences in the context of our study. First, a database view
is a stored database query which can be used to simplify
other queries. A view can refer to other views, tables or
materialized views. A view does not itself store data and is,
hence, automatically refreshed when the view is queried. A
materialized view, on the other hand, stores pre-calculated
datasets, making the use of these datasets computationally
faster. However, a materialized view often does not refresh
automatically but needs explicit refreshing. Finally, tables store
database data, and enable the use of views and materialized
views. In addition, instead of a refresh, the data in tables are
modified with database operations such as inserts, updates,
and deletes. Refreshing data in tables typically requires more
effort and is more computationally intensive.

As tables and materialized views can contain stale data, they
are in the center of our study. We call tables and materialized
views materialized entities if it is important to separate them
from views. Tables and materialized views offer potentially
larger performance gains than views, as their contents are
not calculated at query runtime, but beforehand [5]. Some
work also exist on selecting which views to materialize, i.e.,
which views should be transformed to materialized views for
performance gains [6].

B. Approaches to data loading

As data changes in the source systems, the data loads
are pushed downstream into the staging area and into the
entities of the data warehouse and data marts. Sometimes,
especially in the case of complex computations, the entities are
rebuilt from scratch when the data changes. However, modern
environments typically utilize a fast refresh or delta update
approaches, where only the changes are calculated and applied
to the entities instead of a complete rebuild [2].

There are several methods of refreshing materialized enti-
ties. First, a manual refresh refreshes the materialized entity

when explicitly requested [7]. Second, a materialized entity
can be refreshed on demand [8], i.e., according to a schedule,
or periodically. Third, materialized entities may be refreshed
on commit [9], meaning that each committed transaction in
the source systems also refreshes the whole downstream up
to the materialized entity. Fourth, immediate [10] refreshes
imply refreshing materialized entities as soon as the source
data changes. Fifth, in the case of lazy updates, a materialized
entity is refreshed only when someone queries it [11], [12].
The last approach requires both a log to track whether the data
have changed, as well as a transaction control mechanism to
apply the changes correctly [9].

C. Dependencies between entities

A database entity may depend on one or several entities
of the data warehouse environment. There are at least three
types of dependencies in database entities. First, views and
materialized views refer to other entities in their definitions.
Additionally, there might be logical dependencies between
tables and other entities as the data in a table is updated with
a load from the other entities. Moreover, entities might have
constraints that relate to other entities. A typical example is a
foreign key definition between two entities.

All three dependencies restrict the refresh order of the
entities. If entities are refreshed in an incorrect order, the
database may end up with either stale data, or data objects that
violate database constraints. Thus, it is essential to account
for these types of dependencies when deciding the order of
entity refreshes. This network of dependencies is essential
in describing the problem and it is natural to illustrate the
network as a graph.

D. Comparison with other approaches

The order of the entity refreshes can be expressed as finding
a data lineage type graph path to a given database entity,
and there exists several graph theoretical formulations for
constructing the refresh order [1], [2], [13], [14]. However,
instead of describing the problem formally using graph theory,
we explain the construction of the ordered graph in a simple
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Fig. 2. Example of a cyclical graph in (i), and possible acyclic outcomes of heuristic splitting in (ii) and (iii)

way that can be implemented with relative ease on readily
available programming libraries in a multitude of languages.

III. IMPLEMENTATION

A. Premise

As explained in the previous section, reducing unnecessary
computation is often desired. Traditionally, data loads are
executed from the source systems to the staging area, then
to the data warehouse, and finally into the data marts. That is,
when data objects change in the source systems, the updates
are pushed down the data stream. However, as discussed in
Section II-B, downstream data structures can also be refreshed
only when needed. That is, in lazy fashion. Thus, our method
focuses on lazy updates with a pull-type approach, according
to which the needed data are pulled with specific chain of
loads from the staging area (or even source systems) when
up-to-date data is needed.

In our study, a query to a database entity initiates the pull
operation, which only refreshes the necessary database entities.
For brevity, in this study we assume that the refresh is initiated
by a query to a database entity. This is not necessarily the case,
and the method can also be utilized with other approaches
described in Section II-B. Moreover, often multiple entities,
like a full data mart, are refreshed at the same time.

B. Representing data loading as a load graph

When implementing a data load dynamically, we first
choose an ordered set of entities to be refreshed. Data loads
can be illustrated as directed graphs by expressing entities as
nodes, and loads as edges. The direction of an edge defines
the source and target of the load, or alternatively, a foreign
key constraint where the primary (i.e., referenced) table has a
directed edge to the secondary (i.e., referencing) table.

Typically this graph is also layered in the way that the nodes
in each layer only have edges to the nodes in the same or next
layer. For example, enterprise data warehouse entities typically
do not refer to data mart entities.

To efficiently utilize computing resources, we try to min-
imize the amount of needed loads by finding the minimal
load subgraph of the whole data flow graph (such as the one
in Fig. 1). Both the full load graph and the minimal load
subgraph are typically acyclic, making them directed acyclic
graphs. However, in the next section, we explain how to treat
possible cycles in the graph.

C. Dealing with cyclical data loads and graphs

There are some aspects that make representing a data load
flow cyclic in nature. For example, a refresh of a database
entity might cause its own refresh later. Understandably, exe-
cuting an endless loop of data loads is not feasible and needs
to be solved in the design. A more typical cause of cycles are
database constraints such as foreign keys. A special case of
this are so-called facing foreign keys where two entities have
both foreign key references to each other. Adding more data
to a database with this kind of cyclical constraints typically
involves workarounds such as disabling foreign key constraints
temporarily.

Hence, we need to define some heuristic for removing the
cycles. Typical heuristics include executing every refresh at
most once. In the case of database constraints, their validity
can be checked only afterwards.

From load graph perspective, the heuristics can be expressed
as removing edges or splitting the entity nodes into two or
more. Some splitting examples are presented in Fig. 2. It is
important to note that a heuristic does not necessarily yield
unique results. For example, the cyclical graph (i) in Fig. 2 is
modified with node splitting to produce the alternative acyclic
graphs (ii) and (iii).

D. Selecting entities for a refresh

We now present our approach as an algorithm which gives
the ordered load list of a given load graph. The selection
of database entities for a refresh using the pull-type loading
takes the data flow load graph (graph G) and the queried
entity (node TargetNode) as inputs. The algorithm outputs
an ordered set of database refreshes (OrderedList) as detailed
in Algorithm 1. We call the approach of lazily selecting the
ordered list of entities pull-type deep refresh of an arbitrary
database entity. There are two main challenges to this. First,
deciding which entities are necessary for a particular load
subgraph, and second, deciding the suitable order for updated
entities to ensure that the final result is both correct and up-
to-date.

The first challenge can be solved by reverting the edges of
load graph and doing full graph traversal from the target entity
TargetNode. That is, we visit all the nodes that can be reached
from TargetNode. Graph traversal can be done by typical graph
search algorithms such as a depth-first search. That is, when an
entity (i.e., node in the graph) is queried, we create a directed
depth-first search on the reverted load graph from the node
and return the traversed load subgraph.
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gorithm 1 Select database entities for pull-type deep refresh load

1:

Input: A database entity node T'argetNode to be refreshed
Output: An ordered list of database entities to be refreshed
Gdag < graph G with cycles removed by a given heuristic

Input: A directed graph G with database entities as nodes. Edges consist of load dependencies and foreign key references.

Grev < graph Ggq4 with reverted edges

OrderedList < reversed OrderedList,.q,
return OrderedList

R A S o

S < subgraph of the traversed nodes and edges given by Depth—first search from TargetNode for graph G,.,
OrderedList,., < ordered list of entity nodes by Topological sorting of graph S

The second challenge can be solved by utilizing topological
sorting of the load subgraph nodes. Graph topological sorting
gives an ordered list of nodes in which all predecessors of a
node are located earlier in the ordering. That is, if there is a
directed graph path from a node a to node b, topologically
ordered list has a always before b. Topological ordering is
used in, e.g., scheduling problems to give an order of jobs to
execute. Topological sorting can be done with readily available
algorithms [15], [16].

In Algorithm 1, we combine the aforementioned steps.
Fig. 3 illustrates the algorithm with a practical example.
Given the ordered list of entities of the load subgraph, we
have everything to execute pull-type deep refresh of the
TargetNode. It is important to note that both the graph search
and the topological sorting algorithms are widely available in
various programming languages and libraries. For example,
with Python NetworkX library, the Algorithm 1 could be
implemented as follows.

import networkx as nx

2| g_rev = g_dag.reverse()
3l s = nx.dfs_postorder_nodes (

g_rev, source=target_node
)
return nx.topological_sort (
g_rev.subgraph (list (s))
) .reverse ()

IV. DISCUSSION
A. Discussion on related work

The presented pull-type deep refresh described in this
study can be considered analogous to lazy evaluation in
many programming frameworks. Lazy evaluation postpones
the processing to as late state as possible. This often reduces
the needed overall processing — a large part of processing can
often be skipped. Similarly, if a large part of the data ware-
house is never used, the amount of refreshes can be reduced.
At least one study showed that lazy updates coupled with
“lazy updates when resources are available” had significant
efficiency gains [9]. However, lazy evaluation also has typical
drawbacks which include difficulties in estimating when the
processing should happen and how heavy an operation it would
be.

As mentioned before, describing data flows as graphs and
detecting the data lineage for refreshing only the needed
subgraph is not a novel idea [2], [13], [14]. However, our

contribution is to explain the process in a way that can
be implemented with readily available programming libraries
instead of describing the problem formally.

All in all, we would like to emphasize that practical appli-
cations of selecting entities for refreshes, at least to the best of
our knowledge, are scarce in data warehousing products, and
our motivation for this study is rooted in accessibly commu-
nicating a solution to an old challenge. In our experience, this
is a frequent and important challenge where theory has yet
to be widely applied in practice, despite the age of proposed
solutions.

B. Practical implications

The approach described in this study has practical impli-
cations of reducing unnecessary use of computing resources.
We recommend the approach to be used with delta updates,
i.e., by using the deep refresh approach to select the entities to
be refreshed, and refreshing only the deltas for these entities
instead of all data. However, how much this approach affects
the utilization of computing resources is highly dependent on
domain-specific details such as how many entities there are,
what are their dependencies and foreign key relationships, how
often the staging area would be used to refresh the tables, and
how often the database entities are queried.

Although we have approached the subject from the point
of view of data warehouses where materialized entities are
relatively common, the presented approach is not limited to
data warehouses. The approach is also relevant in, e.g., data
lakehouses [17], transactional databases, or even data lakes as
long as they have similar graph-like loading patterns.

Since efficient data analytics platforms have been one of
the core themes in both industry and research [18], [19], we
believe that the popularization of such an approach will be of
interest to platform developers as well.

C. Technical considerations

Our load graph might not describe the loads in full because
it enables a single load edge between two entity nodes. In
practice, a single load might have multiple source and/or target
entities. This can be solved by splitting the multi-entity load
into multiple one-to-one edges.

Additionally, we might have, in multigraph fashion, multiple
loads between two nodes. If the order of the loads does not
matter, we can treat them as a single graph edge. However,
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Fig. 3. An example of the load graph (i): solid lines represent load dependencies and dashed lines foreign key relationships; rectangles represent database
entities with numbers indicating EDW level and letters data mart level; the bolded E represents the database entity node to be refreshed; based on this, a
corresponding load subgraph (ii) is generated; thick edges and blue nodes are included in the subgraph; the topological sorting of the subgraph gives the
ordered list (iii) which is a reverse of the final refresh order; the algorithm output and the final refresh order of entities is (2 5 9 4 8 A E); note that also (2

4598 AE)and (25498 AE) are similarly valid results

if the internal ordering is crucial, additional steps will be
necessary. We can incorporate the loads themselves as nodes
in the load graph and treat them similar to other nodes.
Ultimately, our ordered list of nodes will include both entities
to be refreshed and loads to be executed. Otherwise, the
process remains the same.

D. Limitations and future work

There are some limitations and considerations regarding this
work. First, we do not provide a way to generate the initial
data flow load graph. For this graph to be constructed, we need
information on the entity dependencies which can be extracted
from the database metadata. The metadata has typically such
information as entity names, foreign key constraints, and entity
query definitions. The dependency graph can be constructed
relatively effortlessly given the amount of theoretical [20] and
practical prior work [21]. However, the implementations might
be database management system specific due to different ways
of storing metadata.

The current version of our algorithm is for selecting an
ordered subset of entities based on a single target entity to be
refreshed. In practice, there might be need to update multiple
entities at once: a typical example being updating all data mart
entities. For this, we can do the graph traversal search from all
the relevant entities as TargetNode and treat the visited nodes
as the load subgraph S.

Moreover, in this study we concentrated on reducing the use
of computing resources by minimizing unnecessary refreshes.
However, load flow optimization also has other aspects like
fault tolerance, network latency and overall cost [22].

Finally, our algorithm does not consider the cut-off point
from which point on the refreshes are not considered. That
is, it is up to the data warehouse environment implementation
to decide whether the leaf nodes of the load subgraph (cf.
Fig. 3(ii)) reside in the enterprise data warehouse, staging area,
or somewhere else. This is a willful abstraction, as different

environments function with different needs. In summary, the
proposed approach does not account for several possible,
implementation-specific intricacies. We have limited the scope
by design to account for the challenge we deemed prominent
in efficient data loads.

For future work, it should be considered whether it is
feasible to further develop the algorithm to account for changes
and load dependencies on column-level instead of the level
of entities [14]. Especially for wide tables that have a large
number of seldom-used column, this approach could further
improve the efficiency. Such dynamic maintenance has been
proposed for simple views before [23]. Furthermore, we expect
to consider how our approach can be integrated with other
aspects of efficient entity management, such as optimizing
memory [24] and indices [25], [26] for analytics. Another
natural further research avenue is concurrent refreshing [27],
which we have not discussed in this study.

V. CONCLUSION

Many data warehouses contain complex relationships be-
tween the staging area data structures, enterprise data ware-
house data and data marts. In this work, we described a pull-
type refresh for selecting database entities to be refreshed,
when a specific entity is queried. The aim of the approach was
to reduce the number of data loads in the system, and load
new data only to the data objects where new data are needed.
We have aimed to communicate the approach in an accessible
way, highlighting the gap between computer science theory
and database industry practice, and showing that bridging this
gap may not be a particularly arduous undertaking.
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