
Accepted: 23 June 2025
© The Author(s) 2025

Communicated by: Scott Fleming.

	
 Toni Taipalus
toni.taipalus@tuni.fi

Hilkka Grahn
hilkka.grahn@jyu.fi

Antti Knutas
antti.knutas@lut.fi

1	 Faculty of Information Technology and Communication Sciences, Tampere University,
Kalevantie 4, Tampere 33014, Finland

2	 Faculty of Information Technology, University of Jyväskylä, Mattilanniemi 2,
Jyväskylä 40014, Finland

3	 Department of Software Engineering, LUT University, Yliopistonkatu 34,
Lappeenranta 53850, Finland

Enhanced SQL error messages facilitate faster error fixing

Toni Taipalus1 · Hilkka Grahn2 · Antti Knutas3

Empirical Software Engineering (2025) 30:136
https://doi.org/10.1007/s10664-025-10695-1

Abstract
Error messages are one of the primary ways software developers communicate with da-
tabase management systems in SQL query writing tasks. Even though reading and in-
terpreting error messages is a significant part of a software developer’s work, the error
messages of SQL compilers have received criticism in terms of readability and their per-
ceived detrimental effects on user experience. Consequently, redesigned SQL error mes-
sages have also been proposed to tackle the problems in current error messages. In this
study, we examine the effects of enhanced error messages on query writing from several
perspectives. The results indicate that when compared to PostgreSQL error messages, the
enhanced error messages facilitate faster error fixing, as well as perceived benefits in er-
ror finding and error recovery confidence. Our results are applicable in industry, where
development time is of significant importance, as well as in educational contexts, where
user experience, user confidence, and perceived support in learning play an important role.

Keywords  SQL · Compiler · Error message · Database management system · Software
development · Error recovery

1 3

http://orcid.org/0000-0003-4060-3431
https://doi.org/10.1007/s10664-025-10695-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-025-10695-1&domain=pdf&date_stamp=2025-7-3

Empirical Software Engineering (2025) 30:136

1  Introduction

Interpreting error messages is a significant aspect of the work undertaken by software devel-
opers (Barik et al. 2017). Various studies have emphasized the essential role of the develop-
ment environment in enhancing the user experience (Donahue 2001), reducing debugging
time (Pane et al. 2002), bolstering user confidence (Taipalus and Grahn 2023b), and in
learning contexts, fostering student motivation (Cauley and McMillan 2010). Despite the
practical importance of this matter, error messages continue to be a source of confusion
and frustration (Becker et al. 2019; Kummerfeld and Kay 2003). The state of error mes-
sages, particularly those associated with programming language compiler errors, cannot be
solely attributed to a lack of scientific research, since the intersection of software engineer-
ing and human-computer interaction has seen several studies on enhancing error messages
(Karvelas et al. 2020). Furthermore, a recent comprehensive literature review, summarizing
numerous studies on programming language compiler error messages (Becker et al. 2019),
concluded that the impact of improving compiler error messages on error recovery remains
inconclusive.

Despite its age, Structured Query Language (SQL) is still the lingua franca of relational
database management systems (RDBMS). SQL is taught effectively in all higher education
information technology curricula such as computer science (ACM/IEEE 2013), software
engineering (ACM 2015), and information systems (ACM/AIS 2020), and remains a highly
sought skill in the software industry (Cass 2022). Despite mature RDBMS implementations
and wide and in-depth education and training opportunities, SQL remains a challenging
language to master, arguably due to the discrepancies between the theoretical foundations
(Codd 1970), the SQL Standard (ISO/IEC 2016a, b), and the different RDBMS imple-
mentations of SQL (Taipalus 2023b). Similarly to many programming language compiler
error messages, error messages of SQL compilers of different RDBMSs leave much to be
desired in terms of taking into account human-computer interaction guidelines and usability
aspects (Taipalus et al. 2021). Furthermore, compared to the lively research field around
programming language compiler error messages, SQL error messages have remained on the
sidelines. Due to the declarative and domain-specific nature of SQL, many of the findings
in programming language compiler error messages are not applicable to SQL. In fact, it
has been implied that SQL-related development tasks are more complex and more time-
consuming than other development tasks (Costa et al. 2023), perhaps even more so when
SQL is used in conjunction with host languages that have immature or rapidly changing
ecosystems, onerous package management, and weak data-I/O integration (Rennels and
Chasins 2023).

This study builds upon a set of recent studies that compared and strove to enhance SQL
error messages. One of these studies established that when compared to the error messages
of several other RDBMSs, the error messages of PostgreSQL are at least marginally more
effective for error fixing (Taipalus et al. 2021). Another study redesigned SQL error mes-
sages based on qualitative insights from query formulation novices (Taipalus and Grahn
2023a), yet did not test the effectiveness of the redesigned error messages. In this study, we
utilize three student cohorts of query formulation novices (N = 509) in order to compare
the error messages of PostgreSQL to the redesigned SQL error messages presented earlier
by Taipalus and Grahn (2023a). We measure error message effectiveness with both subjec-
tive metrics of perceived user confidence and perceived error message usefulness, as well

1 3

 136   Page 2 of 31

Empirical Software Engineering (2025) 30:136

as objective metrics of error fixing success and time taken to successfully fix errors. The
results indicate that enhanced error messages are perceived to help in finding the erroneous
part of the query, they increase error recovery confidence, and they result in approximately
14% faster error fixing. However, it was inconclusive whether the enhanced error messages
were perceived to help in fixing errors, and if the enhanced error messages actually helped
in successfully fixing the errors.

The rest of this study is structured as follows. In the next section, we describe earlier
studies on the nature of SQL errors, proposed guidelines for error message design across
different computer languages, and the effects of enhanced or redesigned error messages. In
Section 3, we detail our research setting, study participants and ethical considerations, data
collection and analysis, and present our hypotheses. Section 4 and Appendix A show our
results. We discuss our findings, practical implications of the results, critical evaluation of
the choices regarding our research setting, and future research opportunities in Section 5.
Section 6 concludes the study.

2  Background

2.1  Errors in SQL Query Formulation

Errors in SQL query formulation have become a subject of increasing scientific attention,
particularly within the domain of computing education research (Taipalus and Seppänen
2020). Current investigations (Taipalus et al. 2018; Migler and Dekhtyar 2020; Wang et al.
2024) categorize user errors in SQL queries related to data retrieval into syntax errors,
identified by the DBMS and leading to a syntax error message, semantic errors, typically
unnoticed by the DBMS, resulting in inaccurate data in the result table irrespective of the
intended query (e.g., a syntactically correct query which will always return an empty result
table) Brass and Goldberg (2006), logical errors, undetected by the DBMS, resulting in
inaccurate data in the result table when considering the query’s intent, and complications,
which may be identified by the DBMS and do not result in incorrect data in the result table
but needlessly complicate the query. Syntax errors have been identified as the most preva-
lent, especially in the formulation of queries by novices (Taipalus and Perälä 2019; Ahadi
et al. 2016a). Common syntax errors, depending on the study, arise from factors such as
references to undefined tables and columns (Smelcer 1995), grouping issues (Reisner et al.
1975; Reisner 1977), omission of mandatory clauses (Smelcer 1995), data type mismatches
(Ahadi et al. 2016a), and misspellings (Welty 1985). Determining the most common SQL
syntax errors poses challenges because, with a few exceptions, studies categorize syntax
errors based on the DBMS used, rendering results incomparable across studies with differ-
ent DBMSs, as different DBMSs categorize and identify errors in different ways (Taipalus
2023b). Moreover, studies have shown that distinct SQL concepts, such as grouping, joins,
or ordering, invite different types of syntax errors (Taipalus and Perälä 2019), naturally
making errors common for queries involving table joins uncommon for queries involving
grouping and a single table.

Despite being more common than other error types, syntax errors are arguably easier
to fix, possibly because they are caught by the DBMS (Taipalus and Perälä 2019; Ahadi
et al. 2016b). This intuitively makes sense, as a syntax error interrupts the query execution,

1 3

Page 3 of 31  136

Empirical Software Engineering (2025) 30:136

preventing the query writer from obtaining a result table, whereas a logical error does not.
A query with a logical error may produce a result table with seemingly correct data that
does not align with the query writer’s intent. Various factors contributing to query formula-
tion errors have been proposed, encompassing human factors such as cognitive load theory
(Smelcer 1995), misconceptions about the language or generalizations (Miedema et al.
2021), self-induced complexity (Miedema et al. 2022b), procedural fixedness (Taipalus
2020), and simple sloppiness (Miedema et al. 2022a; Smelcer 1995). Since syntax errors are
typically the only type of error that results in an error message, research on error messages
has focused on syntax errors. It has been up to the query writer or writers to spot and fix
semantic and logical errors, although there have been efforts towards identifying semantic
errors in SQL queries (Taipalus 2023a), as well as automatically repairing some syntax and
logical errors (Presler-Marshall et al. 2021; Pasupuleti et al. 2023).

2.2  Error Message Design Guidelines

Numerous research endeavors underscore the significance of compiler error messages in
the fields of computing education and software development within the context of program-
ming languages (Becker et al. 2016, 2019; Wrenn and Krishnamurthi 2017). However, these
studies assert that current compiler error messages suffer from ineffectiveness, attributed to
various factors such as confusing and unconstructive phrasing (Becker et al. 2016, 2019),
leading users to experience feelings of inadequacy and anxiety when confronted with such
messages (Shneiderman et al. 2016). The significance of error messages in the feedback
loop between the end-user and the compiler is even more pivotal for novice users, who
arguably need more support in error recovery. Such novices may either be novices in com-
puter languages overall or experts in changing from one language to another. Since the
quality of error messages significantly influences the overall user experience, improvements
in error messages extend benefits to professionals as well (Kantorowitz and Laor 1986). In
the context of SQL compilers, various DBMSs offer various error message elements such
as identifying error position (e.g., PostgreSQL), providing hints (e.g., VoltDB), identifying
several syntax errors within a single query (e.g., SQL Server), and providing error codes
(e.g., Oracle Database) (Taipalus and Grahn 2023a).

Several scholars and practitioners have proposed guidelines for enhancing and designing
both system messages and error messages. Between 1982 and 2023, studies have proposed
that different messages should have qualities such as being brief (Shneiderman 1982; Traver
2010) to reduce cognitive load (Becker et al. 2019), being specific (Shneiderman 1982),
showing hints (Becker et al. 2019; Taipalus and Grahn 2023a), and removing unneces-
sary elements such as error codes and environmental variables (Taipalus and Grahn 2023a).
Some of these guidelines are based on expert opinion, others on empirical evidence. Addi-
tionally, some of these guidelines concern general system messages, some programming
language compiler error messages, and some SQL error messages. Establishing guidelines
for error message design proves challenging due to the diversity of the tasks involved. Even
when some guidelines are derived from empirical data, conflicts may arise between these
guidelines or within the guidelines themselves (Dix et al. 2005). For instance, Shneider-
man’s (1982) recommendations for constructiveness and brevity could be perceived as con-
tradictory. The suggestion has been made that adhering strictly to different design guidelines
is not necessary. Rather, they serve the purpose of constraining the design space to steer

1 3

 136   Page 4 of 31

Empirical Software Engineering (2025) 30:136

clear of creating unusable systems (Dix et al. 2005). In essence, design guidelines offer a
perspective for designers to consider crucial aspects of error messages.

2.3  Effects of Enhanced Error Messages

Empirical investigations have demonstrated that improved error messages in programming
languages can lead to a decrease in the occurrence of errors (e.g., Becker 2016), and end-
users may express a preference for such enhanced error messages (e.g., Barik et al. 2018;
Thiselton and Treude 2019). However, several studies have also presented inconclusive or
negative outcomes (e.g., Prather et al. 2017; Nienaltowski et al. 2008; Pettit et al. 2017).
Conversely, certain approaches, such as adjusting error message spacing, utilizing colors
(Dong and Khandwala 2019), and implementing syntax highlighting (Hannebauer et al.
2018), have demonstrated the potential to enhance the effectiveness of error messages.
However, the supporting evidence for these techniques has at times been anecdotal (Becker
et al. 2019) and, in some cases, contentious (Sarkar 2015; Denny et al. 2014; Pettit et al.
2017; Zhou et al. 2021).

To the best of our knowledge, we are not aware of a single research effort into the effects
of redesigned or enhanced SQL syntax error messages. Figure 1 summarizes the most rel-
evant set of prior scientific efforts leading up to this study. A study on DBMS-independent
SQL error categorization established a set of most common SQL syntax errors (Taipalus
et al. 2018). Subsequently, the sixteen most common syntax errors were selected and queries
that exhibit these syntax errors were formulated to form an SQL error message test suite
(Taipalus et al. 2021). This test suite was used to compare the effectiveness of traditional
RDBMS error messages (Taipalus et al. 2021), as well as error messages of novel NewSQL
systems (Taipalus and Grahn 2023b). The results indicated differences in the effectiveness
of different DBMSs, most importantly that PostgreSQL’s error messages are somewhat
more effective than those of other traditional RDBMSs. Further, it was shown that gen-
eral system message qualities poorly explain the effectiveness of SQL error messages, i.e.,
general system message design guidelines fail to particularize to SQL (Taipalus and Grahn
2023a). Finally, SQL error message design guidelines were formulated based on empirical
evidence, and applications of these guidelines were shown in the context of the SQL error
message test suite (Taipalus and Grahn 2023a). In this study, we compare the effectiveness
of previously redesigned SQL error messages to those of PostgreSQL.

Fig. 1  The most relevant prior scientific studies affecting the research setting in this study; research goals
are presented in rectangles with solid lines, and results in rectangles with dashed lines

1 3

Page 5 of 31  136

Empirical Software Engineering (2025) 30:136

3  Research Setting

3.1  Study Participants

The study participants were recruited from a university database course. The course follows
AIS/ACM curriculum guidelines for an undergraduate database course (ACM/AIS 2020)
including theory and practical exercises on conceptual modeling, SQL, and database nor-
malization. The course has no particular prerequisite courses, yet it is typically taken by sec-
ond-year students. In the course, SQL was covered through weekly lectures complemented
with lab exercises. SQL concepts relevant to this study included basic statement structures,
expressions such as classical comparison operations, LIKE, BETWEEN, IS and IN in both
WHERE and HAVING clauses, joins using correlated and non-correlated subqueries and the
JOIN clause, aggregate functions and grouping, as well as ordering. More advanced con-
cepts such as window functions or common table expressions were not covered. The course
strives to teach ANSI/ISO SQL without focusing on a particular DBMS implementation.
In the lectures, SQL was covered through theory and practical work regarding reading and
writing queries, and the exercises focused on writing SQL queries with an online learning
environment that uses SQLite as the underlying DBMS.

After the course had covered SQL, the course students were given the opportunity to earn
course credit by filling out a survey. Additionally, the students were given the opportunity
to opt in on giving their survey answers to be used in this study. Opting in had no positive
or negative effects, and a full privacy statement was presented before choosing whether to
participate. The data were collected from three groups of participants, i.e., three student
cohorts, henceforth referred to as cohorts A (n = 190), B (n = 152) and C (n = 167). Out of
the total of 592 students who answered the survey, 509 (86%) chose to participate. Since
the research was based on informed consent, the physical integrity of the participants was
not involved, the participants were not minors, the research did not expose the participants
to risk of strong stimuli, mental harm, or safety, and no separate ethical committee approval
was required as per our institutions’ guidelines.

3.2  Data Collection

For data collection (i.e., the survey mentioned in the previous section), we utilized a previ-
ously formulated SQL test suite (cf. Appendix S3 in Taipalus et al. (2021)1). The test suite
consists of sixteen tests, each of which contains a schema diagram of the underlying data-
base, a task expressed in natural language (e.g., “find all red cars”), a corresponding SQL
query with a syntax error, an error message related to the syntax error, a text-field in which
the participant is asked to write the fixed query, and three five-point Likert questions asking
how useful the error message was in finding the error, fixing the query, and how confident
the error message made the participant feel in error recovery. Each of the erroneous queries
in the test suite is related to different syntax errors, e.g., “using nonstandard operators” or
“using an aggregate function outside SELECT or HAVING”, which have been found com-
mon in an earlier study (Taipalus et al. 2018). The survey instrument also records the dura-
tion of attempting to fix a query.

1 ​h​t​t​p​s​:​​​/​​/​a​r​​s​.​e​l​​s​-​c​​d​n​​.​c​​o​m​/​​c​o​n​t​​e​​n​t​/​i​m​​​a​​g​e​​/​​1​​-​s​​2​.​0​-​S​0​​1​6​4​1​2​​1​2​2​1​​0​​0​1​3​1​​X​-​m​m​c​3​.​p​d​f

1 3

 136   Page 6 of 31

https://ars.els-cdn.com/content/image/1-s2.0-S016412122100131X-mmc3.pdf

Empirical Software Engineering (2025) 30:136

For cohort A, we used the test suite that contains error messages produced by Post-
greSQL 12.1. For cohort B, we modified the test suite so that instead of PostgreSQL error
messages, the test suite contains redesigned error messages. The redesigned error messages
were adapted from a previous study (Taipalus and Grahn 2023a) which, according to an
empirical mixed-methods analysis, offers nine guidelines for designing SQL error mes-
sages, e.g., stating why the error occurs, providing hints for fixing the error, placing most
important information first, and removing unnecessary information from the error message.
That study also gives sixteen examples of applying the design guidelines to SQL syntax
error messages. One example of error message redesign is shown in Fig. 2, which shows
how a PostgreSQL error message can be redesigned according to the guidelines: the word
ERROR is removed; most important information (i.e., error position) is given first; the error
message states in plain English what is incorrect with the query; the error message gives a
hint, speculating what the user might want to accomplish; and the error message shows a
working example of query concepts identified erroneous. All the redesigned error messages
are reported in Appendix B. We utilize these sixteen examples in this study.

Cohort C was randomly divided into two groups, one of which took the same test suite
as cohort A, and the other the same test suite as cohort B. In the subsequent analyses, we
compare the results of cohort A to cohort B, and the results between the two groups within
cohort C. In addition to the sixteen tests, the test suite contains four control questions which
are the same for all participants, regardless of cohort. Control questions were used to control
the possible skill differences between compared cohorts and groups. Figure 3 summarizes

Fig. 2  An example of an original PostgreSQL error message (above) and a redesigned error message
(below); notes show which parts of the error message have been redesigned or repositioned according to
the SQL error message redesign guidelines; notes marked with an asterisk pertain to error message ele-
ments which were also present in the original error message

1 3

Page 7 of 31  136

Empirical Software Engineering (2025) 30:136

the data collection across the three cohorts. Appendix B contains the error messages of
PostgreSQL as well as the redesigned error messages.

3.3  Data Preparation

After data collection, we ran the fixed queries the participants had submitted through Post-
greSQL to determine which answers were syntactically correct. That is PostgreSQL decided
whether a participant’s query was syntactically correct or incorrect. Next, among the syn-
tactically correct queries, we manually determined whether the queries were also logically
correct equivalents to their corresponding tasks (e.g. list all red cars). This posed some
subjectivity, as some participants merely fixed a typographic error in the erroneous query,
while others chose to almost completely rewrite a query, fixing the syntax error in the pro-
cess as well. We determined that a logically correct query would return a correct result
table. If ordering was not required the order of rows in the correct result table was not rel-
evant. Answers that were both syntactically and logically correct were considered correct,
and answers that contained at least one error (regardless of the nature of the error) were
considered incorrect. Regarding erroneous query fixing time, we omitted answers in cases
where a participant used less than 15 seconds for query fixing, as well as answers in which
a participant used more than 1,200 seconds (20 minutes) for fixing a query. These cut-off
points were selected based on observations of durations, and chosen to omit cases where
participants merely sped through the pages in the survey instrument, or left a page open. Out

Fig. 3  Data collection process across the three cohorts (A, B, C); cohort A answered the test suite with
PostgreSQL error messages, cohort B answered the test suite with redesigned error messages, and cohort
C was divided into two groups, one of which answered the same test suite as cohort A, and the other the
same test suite as cohort B

1 3

 136   Page 8 of 31

Empirical Software Engineering (2025) 30:136

of the 2,672 observations (167 participants × 16 tests) for cohort C, this resulted in omitting
17 observations. An α-level of.05 was chosen for all tests.

3.4  Hypotheses

We formulated five hypotheses based on the research setting. All hypotheses test whether
the query-fixing process with redesigned error messages is in some way different from the
query-fixing process with PostgreSQL’s error messages. Hypotheses H1 through H4 are
tested with three cohorts (A, B, C), while hypothesis H5 is merely tested with one cohort
(C). The first three hypotheses are based on subjective perceptions, while the last two are
based on objective metrics.
H1:	 redesigned error messages are perceived to make finding syntax errors easier.
H2:	 redesigned error messages are perceived to make fixing syntax errors easier.
H3:	 redesigned error messages increase user confidence in syntax error recovery.
H4:	 redesigned error messages make syntax error fixing more successful.
H5:	 redesigned error messages make syntax error fixing faster.

4  Results

4.1  Redesigned Error Messages Were Perceived to Help in Finding the Errors

We conducted a Mann-Whitney U test to examine potential differences in participants’ sub-
jective evaluations of error message usefulness for error finding, fixing, and recovery confi-
dence between two designs of error messages: PostgreSQL (n = 190 in cohort A, n = 82 in
cohort C) and redesigned messages (n = 152 in cohort B, n = 85 in cohort C) in all 16 tests.
Upon visual examination, it was observed that the distributions of the scores were not suf-
ficiently similar. Consequently, mean ranks were utilized instead of medians for reporting.
The results for all hypotheses are summarized in Table 1.

The results support H1 for all cohorts: for finding the error, error message usefulness
scores were statistically significantly greater in the redesigned messages (mean rank 3147.54

Table 1  The results indicate that the redesigned error messages are perceived to be more useful in finding
the error, facilitate error recovery confidence, and result in faster error fixing; however, we failed to reject
the null hypotheses for perceived usefulness in error fixing and actually fixing the error correctly with cohort
C; effect sizes are reported for statistically significant results as Cohen’s d for H1, H2, H3 and H5, and as
Cramér’s V for H4
Hypothesis Supported Test statistic Effect size

AB C AB C AB C
H1 error finding yes yes U = 2696997, z = −19.167,

p <.001
U = 796385, z =
−4.749, p <.001

.518 .117

H2 error fixing yes no U = 2405552, z = −23.612,
p <.001

U = 848203, z =
−1.754, p =.079

.668

H3 recovery confidence yes yes U = 2955102, z = −13.274,
p <.001

U = 842701, z =
−2.074, p =.038

.362 .059

H4 query fixed correctly yes no p <.001 p =.239 .098
H5 time taken (n/a) yes (n/a) t(2285) = 4.053, p

<.001
.170

1 3

Page 9 of 31  136

Empirical Software Engineering (2025) 30:136

for AB, and 1390.39 for C) compared to the PostgreSQL messages (2407.67 for AB, and
1263.16 for C). The Likert distributions are presented in Fig. 4a and b.

4.2  It was Inconclusive Whether the Redesigned Error Messages were Perceived to
Help in Fixing the Errors

The results support H2 for the AB cohort comparison: for fixing the error, error message use-
fulness scores were statistically significantly greater in the redesigned messages (3267.38)
compared to the PostgreSQL messages (2311.80). However, the results fail to reject the null
hypothesis for the comparison between the groups in cohort C. The Likert distributions are
presented in Fig. 4c and d.

Fig. 4  Comparison of relative Likert scale distributions for PostgreSQL and enhanced error messages for
the subjective metrics of error finding, error fixing, and recovery confidence

1 3

 136   Page 10 of 31

Empirical Software Engineering (2025) 30:136

4.3  Redesigned Error Messages were Perceived to Increase Error Recovery
Confidence

The results support H3 for all cohorts: for error recovery confidence, error message use-
fulness scores were statistically significantly greater in the redesigned messages (3041.41
for AB, and 1356.16 for C) compared to the PostgreSQL messages (2492.57 for AB, and
1298.74 for C). The Likert distributions are presented in Fig. 4e and f.

4.4  It was Inconclusive Whether the Redesigned Error Messages Helped in
Successfully Fixing the Errors

In the comparison between cohorts A and B, 77.1% of the erroneous queries in the Post-
greSQL group were fixed correctly (H4), and in the redesigned error messages group, 84.9%
of the erroneous queries were fixed correctly. Tested with Pearson’s chi-squared, the differ-
ence was statistically significant (p <.001). In the comparison between the groups in cohort
C, 85.3% of the erroneous queries in the PostgreSQL group were fixed correctly, and in
the redesigned error messages group, 86.9% of the erroneous queries were fixed correctly.
Tested with Pearson’s chi-squared, the difference was not statistically significant (p =.239).

4.5  Redesigned Error Messages Resulted in Faster Error Fixing

We used an independent samples t-test to determine if there were differences in the time
taken to fix the queries. The results support H5, as it was found that for correctly fixed que-
ries, participants presented with PostgreSQL error messages used statistically significantly
more time (M = 225.90 s ± 212.302 s) to fix the error than the participants presented with the
redesigned error messages (M = 194.18 s ± 159.546 s), t(2285) = 4.053, p <.001. The time
taken to fix the query was only collected from cohort C.

4.6  Test-by-test Results

To account for the number of tests in the test-by-test comparisons, we adjusted the alpha
level (α-level =.05) with Bonferroni correction. An alpha-level of α = 0.05

16 =.003125 was
selected for the test-by-test comparisons. Table 2 summarizes the results test-by-test. The
test statistics are reported in Appendix A due to their length.

5  Discussion

5.1  Discussion of the Results

It has been suggested before that measuring error message effectiveness merely by whether
error recovery is successful may not be sufficient (Taipalus and Grahn 2023b). Because the
syntax error message test suites measure also perceived or subjective aspects, we decided
to include them in addition to measuring query fixing success. The results show quite uni-
formly that error finding (H1) was perceived to improve with the enhanced error messages
when compared to those of PostgreSQL. The results were more uniform in the inter-cohort

1 3

Page 11 of 31  136

Empirical Software Engineering (2025) 30:136

comparisons (AB) than in the intra-cohort comparisons (C). Within the inter-cohort compar-
isons, thirteen of the sixteen tests showed that the enhanced error messages were perceived
to help in error finding more than those of PostgreSQL. PostgreSQL error messages were
not seen as more helpful in this regard in any of the tests. In the rest of the tests, the results
were not statistically significant. Within the intra-cohort comparisons, the enhanced error
messages were perceived better in two of the tests, and PostgreSQL error messages in none
of the tests. In most of the tests, the differences were not statistically significant. Overall,
these results are in line with previous error message effectiveness comparisons regarding
error finding (Taipalus et al. 2021; Taipalus and Grahn 2023b). The test-by-test results show
no clear patterns that would match previously studied PostgreSQL error message effective-
ness comparisons, which could shed some light on why the results from these tests were
statistically significant (Taipalus et al. 2021). Additionally, scientific evidence on what is
perceived as helpful in SQL error messages does not always align with what has been objec-
tively measured to be helpful. For example, a quantitative study found that ordering the
most critical information first in an SQL error message predicts error-fixing success more
accurately than any other message characteristic Taipalus and Grahn (2024), yet one qualita-
tive study showed that novices perceived that SQL error messages that show the erroneous
position are the most helpful in error recovery Taipalus et al. (2025).

For perceived usefulness in error fixing (H2), the results are rather similar to H1. Within
the inter-cohort comparisons, the enhanced error messages were perceived as more helpful

Table 2  Test-by-test results for each dependent variable (error finding, error fixing, error recovery confi-
dence, success in fixing the query correctly, and time taken to fix the query) for by participant cohort (A, B,
C); dark blue cells represent test results in which the redesigned error messages were more effective with
a statistically significant difference (i.e., supporting the corresponding hypothesis), dark orange cells (none
present) represent test results in which the PostgreSQL error messages were more effective with a statisti-
cally significant difference; light blue and light orange cells represent respective results with no statistically
significant difference; the light-colored cells are for descriptive purposes and should not be interpreted as
differences

1 3

 136   Page 12 of 31

Empirical Software Engineering (2025) 30:136

in fixing the error in fourteen of the sixteen tests. PostgreSQL error messages were not seen
as more helpful in this regard. Within the intra-cohort comparisons, the enhanced error mes-
sages were perceived as more helpful in one of the tests, while other differences were not
statistically significant. Overall, as stated in Section 4.2, this means that there is not enough
evidence to claim that the enhanced error messages are perceived to help in fixing SQL syn-
tax errors. These mixed findings regarding the inter and intra-cohort comparisons somewhat
contest previous observations that the contents of the error message affect perceived useful-
ness in error fixing (Taipalus et al. 2021; Taipalus and Grahn 2023b).

Again, for error recovery confidence (H3), the results reflect those of H1 and H2. Within
the inter-cohort comparisons, the enhanced error messages were perceived to help in error
recovery confidence in eleven of the sixteen tests. Other comparisons were not statistically
significantly different. Within the intra-cohort comparisons, the enhanced error messages
were more helpful in two of the tests. PostgreSQL error messages were not perceived to
help with error recovery confidence in either of the comparisons. Overall, the evidence sug-
gests that enhanced error messages help in error recovery confidence. Such effect has been
observed in one prior study (Taipalus et al. 2021), but no statistically significant differences
have been observed in another (Taipalus and Grahn 2023b).

For successful error fixing (H4), the participants who were shown the enhanced error
messages were more successful in fixing the syntax errors in seven of the sixteen tests
within the inter-cohort comparisons. Within the intra-cohort comparison, the enhanced error
messages facilitated successful error fixing in none of the tests. PostgreSQL error mes-
sages were not better in any of the tests in either comparison. Overall, there is not enough
evidence to claim that the enhanced error messages facilitate more successful error fixing.
This is somewhat in line with what has been previously observed, as PostgreSQL error mes-
sages were shown to be more effective than those of MySQL (yet with a small effect size),
but not more effective than those of Oracle Database (Taipalus et al. 2021). Another study
found that differences between SQL error messages have no effect on successful error fixing
(Taipalus and Grahn 2023b).

The time taken to fix the syntax errors (H5) was studied with only one cohort (C). This
was due to the fact that this metric was only considered late in the data collection process.
In two of the sixteen tests, the results show that the enhanced error messages facilitated
faster (successful) syntax error fixing. None of the tests showed a significantly slower syn-
tax error fixing with the enhanced error messages. Overall, the differences were statisti-
cally significant, showing that the participants who were shown PostgreSQL error messages
used a median time of approximately 226 seconds to fix an erroneous query, while partici-
pants with enhanced error messages used approximately 194 seconds (approximately 14%
decrease in time taken). Time taken to fix queries has not been studied before, yet in the
context of programming languages, error message contents have been observed to affect
error recovery time (Seo et al. 2014). This area of error recovery speed has been identified
as a research dearth before (Becker et al. 2019).

Tests T05 and T09 were the ones with statistically significant differences regarding all
hypotheses, in favor of the enhanced error messages. We did not collect qualitative data on
why some error messages were more effective than others. However, perhaps the reason
why the enhanced error message in test T05 (cf. Fig. 9) was effective is that PostgreSQL’s
error message is rather obscure, given that the error is in using GROUP BY instead of
ORDER BY. In test T09 (cf. Fig. 13), PostgreSQL elects using more jargon than is typical in

1 3

Page 13 of 31  136

Empirical Software Engineering (2025) 30:136

its error messages, which may explain some of the differences in perceived and actualized
effectiveness.

5.2  Practical Implications

Overall, the findings highlight the importance of error message design in facilitating
user understanding and error recovery. Understanding that enhanced error messages can
assist novice query writers in identifying errors within queries better suggests that com-
piler developers should prioritize improving the clarity and specificity of error messages.
The results imply that this may lead to a reduction in debugging time and potentially
enhance the overall user experience of RDBMSs in query writing tasks. Additionally,
enhanced error messages that facilitate error recovery confidence among novice users
can lead to increased user satisfaction and retention. Therefore, RDBMS vendors may
consider investing in improving error message systems as part of their product develop-
ment efforts.

Higher education institutions, especially those offering courses in database manage-
ment and SQL, should consider integrating the use of enhanced error messages into their
curricula. Providing students with exposure to effective error messages can enhance their
learning experience and improve their proficiency in query writing tasks. If the DBMS
error messages support user experience in error finding and error recovery confidence,
it is possible that students feel more encouraged to continue error fixing, which could in
turn lead to more successful error fixing through more attempts to fix an error. Enhanced
error messages do not seem to facilitate more successful error fixing, but they make error
fixing faster among those novices who could fix the errors anyway. Additionally, students
are potential future professionals in technical software development tasks, as well as in
consultant roles. Their user experiences in RDBMS-related tasks arguably play a role
when they choose which tools they prefer to use and recommend to others after their
education.

Despite the practical implications listed above, it is worth noting that especially
with error recovery confidence (H3) and time taken to fix queries (H5), the effect sizes
are weak. Since there are no prior studies on enhanced SQL error messages for com-
parison with our results, it seems reasonable to argue that there is a possibility of
similar findings in SQL error messages as in programming language compiler error
messages. That is, more evidence is needed on SQL error messages to see whether
results are uniform or conflicting. As discussed in Section 2.3, the effects of enhancing
programming language error messages have been conflicted, and error recovery speed
has rarely been a variable in such studies. In our experience, query languages operate
in such a different environment compared to programming languages that comparisons
between error message studies between these two realms are often problematic.

Looking at the rightmost column of Table 2, it seems reasonable to argue that if our
test suite had contained more tests similar to T05 and T09, the results overall would have
been more clear-cut. Therefore, much of the weight behind the practical implications of
the results rests on which types of syntax errors learners and software developers actually

1 3

 136   Page 14 of 31

Empirical Software Engineering (2025) 30:136

need to fix. Despite the fact that the errors in the test suite are based on empirical evidence
on the most prominent SQL syntax errors, it is unclear what the proportions of the types
of errors are. As a hypothetical example, if the syntax error of T01 accounts for 50% of all
encountered syntax errors, the test suite does not represent real situations, as the syntax
error of T01 only accounts for approximately 6% (1

16) of syntax errors encountered in our
dataset. The difficulty here is that the types of syntax errors are highly dependent on the
type of query the query writer is writing, and the type of query is highly dependent on the
business domain. Therefore, it is arguably not possible to define a test suite that represents
all business domains.

In this paper, our contribution to the body of literature was the first evaluation of
recommendations towards better SQL error message design through empiricism and
objective metrics (as opposed to subjective perceptions of participants or experts).
When comparing our findings and recommendations to the wider field of research on
programming error messages, our results align with Karvelas et al. (2020) who recom-
mend error messages with better support to novice programmers, and Barik et al. (2018)
who found that error messages that build human-readable arguments are more helpful
to novices.

5.3  Threats to Validity

We recognize that our research setting is prone to several uncontrolled variables. Prior
knowledge concerning the error messages of a particular DBMS might accustom a par-
ticipant to those error messages, mitigating the shortcomings or benefits of the mes-
sages, and emphasizing familiarization. We utilized SQLite in the database course from
which the participants were recruited. This allowed practical exercises with SQL prior
to the study, yet without using PostgreSQL or the redesigned error messages, which
could have biased the results. Additionally, it is worth noting that by studying novices
(who arguably benefit from error messages the most), we focus on novice experiences.
This poses the open question of whether the results can be generalized to expert users.
Additionally, we did not collect demographic data on the participants, and nuances
between e.g., different prior courses taken, participant age or gender are outside the
scope of this study.

As our study includes participants from three student cohorts, it is possible that changes
in the teaching environment affect the results. To control this effect, the database course was
taught by the same teacher using exactly the same teaching materials for all three cohorts,
so any drift in teaching materials over time was eliminated. However, due to COVID-19,
cohorts A and B studied in a remote teaching setting, while cohort C studied in a classroom.
For this reason, we only compared remote-remote groups (A and B), and classroom-class-
room groups (cohort C divided into two groups). That is, we did not compare remotely-
studied participants with classroom-studied participants due to their obviously unequal
study conditions. Additionally, cohort C was split at random into two subgroups, so that any
unobserved time-oriented drift within that academic term cannot systematically favor one
version of the messages.

1 3

Page 15 of 31  136

Empirical Software Engineering (2025) 30:136

It is possible that there are skill differences both between cohorts (A, B), and within a
randomly divided, single cohort (C). In fact, the greater differences in inter-cohort com-
parisons across hypotheses (H1) through (H4) may suggest that there was an uncontrolled
variable affecting the results that are not present in the intra-cohort comparisons. To con-
trol this, the test suite includes four control questions similar to the tests proper. Based
on how well the participants fixed the syntax errors in the SQL queries in the four control
questions, we tested for possible skill differences. Mann-Whitney U tests revealed that
there were no statistically significant skill differences between cohorts A and B in error
fixing success (U = 14166.5, z = −0.399, p =.690), or between the groups within cohort
C in error fixing success (U = 3171.5, z = −0.939, p =.348) or in error fixing time (U =
53588.0, z = -.743, p =.458). This confirms that differences in the timing of data collec-
tion (A before the redesign, B after) or the mode of teaching (remote vs. classroom) did
not translate into different SQL-debugging abilities before seeing the experimental error
messages.

We studied the phenomenon of SQL error recovery in a relatively controlled way, which
can be considered an unnatural environment. As described in Section 2.2, a query writer
typically engages in a feedback loop with the compiler. This compiler can be interacted
rather directly with a DBMS’s command line interface, or via various integrated develop-
ment environments cf. e.g.,, (Ahmed et al., 2022). Neither of these considerations were
present in our study. The reason for this was to collect error recovery data in a controlled
way, i.e., starting from a situation in which a set syntax error had already been committed.
This allowed us to focus on certain syntax errors and ensured that the data collection yielded
data that could be compared.

Finally, in terms of long-term learning outcomes, it remains unclear whether students
benefit from enhanced error messages apart from the immediate positive effects. For exam-
ple, does the increased support in the error messages foster learning SQL concepts more
effectively, or does it merely help fix errors?

5.4  Future Directions

The field of SQL error messages, as with programming language compiler error messages,
needs more scientific evidence. First, it still remains unclear which elements of SQL error
messages facilitate the desired qualities of perceived helpfulness in error finding and fix-
ing, error recovery confidence, as well as success and speed of error fixing. Despite the
fact that helpful elements have been empirically collected and – with this study – their
effectiveness tested, the results are not particularly clear-cut. This might also be due to the
fact that the enhanced error messages were compared with those of PostgreSQL, instead
of RDBMSs that have been shown to produce less effective error messages in prior stud-
ies. Second, the field of SQL error message studies needs more evidence: replication
studies with (i) queries representing different syntax errors, (ii) participants with different
educational and cultural backgrounds, (iii) more complex queries to emphasize the effects
of complexity on error fixing success, time taken, and error finding, (iv) comparisons with

1 3

 136   Page 16 of 31

Empirical Software Engineering (2025) 30:136

error messages from less effective RDBMSs to understand whether the effects shown
in this study are more clear-cut with RDBMSs such as Oracle Database or MySQL, (v)
understanding on how environmental considerations such as the integrated development
environments and their features such as syntax highlight and real-time syntax error dis-
covery affect error recovery.

Arguably, the environments in the early 1980 s were different from today’s hardware
and infrastructure limitations, and considerations for SQL compiler design have probably
changed. Unfortunately, despite the age of SQL, both older RDBMS as well as NewSQL
vendors have been reluctant to redesign the error messages of SQL compilers. This might
be due to several reasons, e.g., error messages are not seen as important features to dedi-
cate vendor time to, or redesigning error messages would require significant alterations
to the compiler, making the undertaking too challenging or time-consuming. Fortunately,
the popularization of large language models may offer a solution for enhancing error mes-
sages without modifying compilers, or being DBMS-specific. Additionally, incorporating
generative models into error recovery may relatively effortlessly incorporate personalized
error messages, as redesigning error messages would rely simply on the prompts rather
than SQL compiler restructuring. However, both performance and energy consumption
may be crucial factors in incorporating large language models into DBMSs. We hope
that our study provides evidence on the implications of redesigning SQL error messages
using the approach introduced in a previous study Taipalus and Grahn (2023a). However,
we note that the comparatively smaller sample sizes in cohort C may have reduced the
statistical power of these tests. Therefore, more scientific evidence is needed to confirm
these results.

6  Conclusion

Fixing errors is an important part of every software developer’s work, and much of this
work is done with the help of compilers, which output error messages to facilitate the
process. However, several studies have shown error messages to be ineffective in vari-
ous ways. In this study, we compared the SQL syntax error messages of PostgreSQL to
redesigned error messages via five metrics. The results implied that (i) the redesigned error
messages were perceived to be more helpful in finding the erroneous part of the queries,
(ii) the redesigned error messages were perceived to increase error recovery confidence,
and (iii) the redesigned error messages made fixing SQL syntax errors faster. In contrast,
the results showed that (iv) the redesigned error messages were not perceived as more
helpful in fixing syntax errors, and that (v) the redesigned error messages did not facilitate
more successful error fixing. The findings of this study help in understanding what types
of redesigned SQL error messages are effective, in which regard, and how much. These
insights are applicable in redesigning SQL error messages for faster error fixing especially
in the software industry, and for increased user experience especially among query writing
novices such as students.

1 3

Page 17 of 31  136

Empirical Software Engineering (2025) 30:136

H
1 F

in
di

ng
H

2 F
ix

in
g

H
3 C

on
fid

en
ce

H
4 C

or
re

ct
H

5 T
im

e
A

B
C

A
B

C
A

B
C

A
B

C
C

T0
1

U
 =

 9
85

3.
5

U
 =

 2
21

0.
0

U
 =

 8
32

9.
5

U
 =

 2
70

4.
5

U
 =

 1
05

84
.0

U
 =

 3
20

1.
0

p
=.

06
8

p
=.

06
1

U
 =

 2
65

1.
0

z =
 −

5.
53

4
z =

 −
4.

23
3

z =
 −

7.
05

2
z =

 −
2.

53
1

z =
 −

4.
41

2
z =

 −
0.

93
6

z =
 −

0.
70

5
p

<.
00

1
p

<.
00

1
p

<.
00

1
p

=.
01

1
p

<.
00

1
p

=.
34

9
p

=.
48

1
T0

2
U

 =
 1

18
58

.0
U

 =
 3

35
9.

5
U

 =
 1

02
34

.5
U

 =
 3

31
5.

0
U

 =
 1

14
90

.0
U

 =
 3

35
0.

0
p

=.
06

9
p

=.
32

7
U

 =
 2

51
7.

5
z =

 −
3.

16
4

z =
 −

0.
30

3
z =

 −
4.

93
0

z =
 −

0.
43

8
z =

 −
3.

43
1

z =
 −

0.
38

1
z =

 −
0.

82
9

p
=.

00
2

p
=.

76
2

p
<.

00
1

p
=.

66
1

p
<.

00
1

p
=.

70
3

p
=.

40
7

T0
3

U
 =

 1
08

91
.5

U
 =

 3
21

4.
0

U
 =

 8
34

6.
5

U
 =

 3
14

2.
5

U
 =

 9
75

2.
5

U
 =

 3
23

9.
0

p
=.

05
3

p
=

1
U

 =
 2

68
8.

5
z =

 −
4.

51
9

z =
 −

0.
65

6
z =

 −
7.

24
9

z =
 −

0.
88

7
z =

 −
5.

46
0

z =
 −

0.
64

4
z =

 −
0.

99
6

p
<.

00
1

p
=.

51
2

p
<.

00
1

p
=.

37
5

p
<.

00
1

p
=.

52
0

p
=.

31
9

T0
4

U
 =

 6
96

2.
5

U
 =

 1
81

9.
5

U
 =

 5
44

7.
0

U
 =

 2
11

3.
0

U
 =

 9
08

8.
0

U
 =

 3
10

5.
5

p
<.

00
1

p
=.

08
7

U
 =

 1
91

5.
5

z =
 −

8.
96

0
z =

 −
5.

57
3

z =
 −

10
.3

31
z =

 −
4.

47
2

z =
 −

6.
07

7
z =

 −
1.

17
7

z =
 −

2.
16

1
p

<.
00

1
p

<.
00

1
p

<.
00

1
p

<.
00

1
p

<.
00

1
p

=.
23

9
p

=.
03

1
T0

5
U

 =
 7

19
0.

0
U

 =
 2

99
0.

5
U

 =
 4

89
4.

0
U

 =
 3

30
2.

5
U

 =
 9

96
8.

5
U

 =
 2

69
8.

0
p

<.
00

1
p

=
1

U
 =

 1
85

5.
5

z =
 −

8.
71

7
z =

 −
1.

42
2

z =
 −

11
.0

72
z =

 −
0.

34
1

z =
 −

5.
17

3
z =

 −
2.

43
2

z =
 −

3.
59

7
p

<.
00

1
p

=.
15

5
p

<.
00

1
p

=.
73

3
p

<.
00

1
p

=.
01

5
p

<.
00

1
T0

6
U

 =
 1

12
55

.5
U

 =
 2

90
4.

0
U

 =
 1

18
04

.5
U

 =
 2

99
6.

5
U

 =
 1

34
48

.0
U

 =
 3

44
3.

0
p

=.
43

1
p

=.
13

8
U

 =
 2

62
1.

5
z =

 −
3.

71
8

z =
 −

2.
15

1
z =

 −
3.

01
3

z =
 −

1.
68

7
z =

 −
1.

12
5

z =
 −

0.
14

4
z =

 −
0.

54
6

p
<.

00
1

p
=.

03
1

p
=.

00
3

p
=.

09
2

p
=.

26
1

p
=.

88
6

p
=.

58
5

T0
7

U
 =

 1
27

50
.5

U
 =

 3
08

1.
5

U
 =

 1
24

77
.0

U
 =

 3
42

5.
5

U
 =

 1
44

20
.5

U
 =

 2
46

8.
5

p
=.

12
1

p
=.

16
3

U
 =

 3
08

1.
5

z =
 −

2.
51

8
z =

 −
1.

56
2

z =
 −

2.
64

8
z =

 −
0.

20
8

z =
 −

0.
02

3
z =

 −
3.

51
2

z =
 −

0.
25

0
p

=.
01

2
p

=.
11

8
p

=.
00

8
p

=.
83

5
p

=.
98

1
p

<.
00

1
p

=.
80

3
T0

8
U

 =
 7

87
2.

0
U

 =
 3

42
9.

5
U

 =
 6

89
2.

5
U

 =
 3

35
1.

5
U

 =
 1

09
55

.0
U

 =
 2

68
9.

5
p

=.
00

2
p

=.
12

7
U

 =
 2

74
4.

0
z =

 −
7.

89
0

z =
 −

0.
21

8
z =

 −
8.

85
5

z =
 −

0.
46

8
z =

 −
4.

12
1

z =
 −

2.
80

4
z =

 −
1.

02
9

A
pp

en
di

x
A

: T
es

t S
ta

ti
st

ic
s

Ta
bl

e
3 

Te
st

-b
y-

te
st

 st
at

is
tic

s f
or

 e
ac

h
de

pe
nd

en
t v

ar
ia

bl
e

(e
rr

or
 fi

nd
in

g,
 e

rr
or

 fi
xi

ng
, e

rr
or

 re
co

ve
ry

 c
on

fid
en

ce
, s

uc
ce

ss
 in

 fi
xi

ng
 th

e
qu

er
y

co
rr

ec
tly

, a
nd

 ti
m

e
ta

ke
n

to
 fi

x
th

e
qu

er
y)

 b
y

pa
rti

ci
pa

nt
 c

oh
or

t (
A

, B
, C

)

1 3

 136   Page 18 of 31

Empirical Software Engineering (2025) 30:136

H
1 F

in
di

ng
H

2 F
ix

in
g

H
3 C

on
fid

en
ce

H
4 C

or
re

ct
H

5 T
im

e
A

B
C

A
B

C
A

B
C

A
B

C
C

p
<.

00
1

p
=.

82
7

p
<.

00
1

p
=.

64
0

p
<.

00
1

p
=.

00
5

p
=.

30
3

T0
9

U
 =

 6
96

9.
5

U
 =

 3
09

4.
0

U
 =

 5
49

3.
5

U
 =

 3
11

8.
5

U
 =

 9
01

8.
5

U
 =

 3
15

1.
0

p
=.

00
1

p
=.

36
7

U
 =

 1
54

2.
0

z =
 −

8.
85

2
z =

 −
1.

34
6

z =
 −

10
.3

30
z =

 −
1.

16
5

z =
 −

6.
20

4
z =

 −
1.

02
9

z =
 −

4.
18

1
p

<.
00

1
p

=.
17

8
p

<.
00

1
p

=.
24

4
p

<.
00

1
p

=.
30

3
p

<.
00

1
T1

0
U

 =
 1

20
22

.5
U

 =
 3

38
8.

0
U

 =
 8

29
3.

5
U

 =
 3

44
2.

0
U

 =
 1

13
24

.0
U

 =
 2

74
3.

5
p

=.
00

2
p

=.
43

3
U

 =
 1

20
8.

0
z =

 −
2.

93
4

z =
 −

0.
33

7
z =

 −
7.

08
7

z =
 −

0.
14

4
z =

 −
3.

53
0

z =
 −

2.
51

5
z =

 −
0.

41
5

p
=.

00
3

p
=.

73
6

p
<.

00
1

p
=.

88
5

p
<.

00
1

p
=.

01
2

p
=.

67
8

T1
1

U
 =

 1
30

17
.5

U
 =

 2
95

0.
5

U
 =

 1
23

43
.0

U
 =

 2
96

4.
0

U
 =

 1
07

92
.0

U
 =

 2
49

5.
5

p
=.

88
3

p
=.

14
7

U
 =

 2
38

9.
5

z =
 −

1.
75

7
z =

 −
1.

44
1

z =
 −

2.
50

3
z =

 −
1.

38
1

z =
 −

4.
11

6
z =

 −
2.

97
1

z =
 −

0.
94

3
p

=.
07

9
p

=.
15

0
p

=.
01

2
p

=.
16

7
p

<.
00

1
p

=.
00

3
p

=.
34

6
T1

2
U

 =
 1

10
55

.0
U

 =
 2

72
1.

0
U

 =
 9

80
8.

0
U

 =
 3

01
2.

0
U

 =
 9

93
6.

0
U

 =
 3

21
5.

0
p

=.
02

6
p

=
1

U
 =

 2
85

1.
0

z =
 −

4.
55

5
z =

 −
2.

69
8

z =
 −

5.
75

5
z =

 −
1.

49
6

z =
 −

5.
34

1
z =

 −
0.

78
3

z =
 −

1.
06

1
p

<.
00

1
p

=.
00

7
p

<.
00

1
p

=.
13

5
p

<.
00

1
p

=.
43

4
p

=.
28

9
T1

3
U

 =
 1

01
88

.5
U

 =
 3

21
7.

5
U

 =
 8

05
5.

5
U

 =
 3

30
7.

5
U

 =
 1

17
33

.5
U

 =
 3

43
4.

5
p

<.
00

1
p

=.
01

6
U

 =
 2

33
1.

5
z =

 −
5.

27
8

z =
 −

0.
79

5
z =

 −
7.

52
5

z =
 −

0.
46

4
z =

 −
3.

16
0

z =
 −

0.
02

7
z =

 −
2.

58
5

p
<.

00
1

p
=.

42
7

p
<.

00
1

p
=.

64
2

p
=.

00
2

p
=.

97
8

p
=.

01
0

T1
4

U
 =

 7
56

8.
5

U
 =

 2
69

2.
0

U
 =

 9
59

4.
5

U
 =

 3
04

9.
0

U
 =

 1
29

16
.0

U
 =

 2
61

0.
5

p
=.

05
6

p
=.

01
9

U
 =

 5
53

.5
z =

 −
7.

83
8

z =
 −

2.
71

1
z =

 −
5.

48
3

z =
 −

1.
38

8
z =

 −
1.

72
4

z =
 −

2.
84

2
z =

 −
1.

17
3

p
<.

00
1

p
=.

00
7

p
<.

00
1

p
=.

16
5

p
=.

08
5

p
=.

00
4

p
=.

24
1

T1
5

U
 =

 1
31

76
.5

U
 =

 2
69

9.
5

U
 =

 1
21

28
.0

U
 =

 3
08

3.
5

U
 =

 1
31

23
.5

U
 =

 2
61

0.
0

p
=

1
p

=.
48

8
U

 =
 2

91
4.

0
z =

 −
1.

96
0

z =
 −

2.
87

1
z =

 −
3.

15
9

z =
 −

1.
13

3
z =

 −
1.

64
3

z =
 −

2.
73

0
z =

 −
0.

70
3

p
=.

05
5

p
=.

00
4

p
=.

00
2

p
=.

25
7

p
=.

10
0

p
=.

00
6

p
=.

48
2

T1
6

U
 =

 1
12

95
.5

U
 =

 3
37

6.
0

U
 =

 9
68

8.
0

U
 =

 2
95

0.
0

U
 =

 1
24

85
.5

U
 =

 3
18

2.
5

p
=.

34
8

p
=.

04
7

U
 =

 1
86

6.
5

z =
 −

3.
92

1
z =

 −
0.

24
7

z =
 −

5.
58

7
z =

 −
1.

74
2

z =
 −

2.
30

3
z =

 −
0.

88
4

z =
 −

2.
65

2
p

<.
00

1
p

=.
80

5
p

<.
00

1
p

=.
08

1
p

=.
02

1
p

=.
37

7
p

=.
00

8

Ta
bl

e
3 

(c
on

tin
ue

d)

1 3

Page 19 of 31  136

Empirical Software Engineering (2025) 30:136

Appendix B: Error Messages

This appendix shows the erroneous queries in the test suites, and corresponding error messages
output by PostgreSQL, as well as the enhanced error messages (Taipalus and Grahn 2023a).

Fig. 6  Test T02

Fig. 5  Test T01

1 3

 136   Page 20 of 31

Empirical Software Engineering (2025) 30:136

Fig. 8  Test T04

Fig. 7  Test T03

1 3

Page 21 of 31  136

Empirical Software Engineering (2025) 30:136

Fig. 10  Test T06

Fig. 9  Test T05

1 3

 136   Page 22 of 31

Empirical Software Engineering (2025) 30:136

Fig. 12  Test T08

Fig. 11  Test T07

1 3

Page 23 of 31  136

Empirical Software Engineering (2025) 30:136

Fig. 14  Test T10

Fig. 13  Test T09

1 3

 136   Page 24 of 31

Empirical Software Engineering (2025) 30:136

Fig. 16  Test T12

Fig. 15  Test T11

1 3

Page 25 of 31  136

Empirical Software Engineering (2025) 30:136

Fig. 18  Test T14

Fig. 17  Test T13

1 3

 136   Page 26 of 31

Empirical Software Engineering (2025) 30:136

Fig. 20  Test T16

Fig. 19  Test T15

1 3

Page 27 of 31  136

Empirical Software Engineering (2025) 30:136

Author Contributions  Toni Taipalus: Conceptualization; Methodology; Investigation; Writing - Original
Draft; Visualization; Project administration. Hilkka Grahn: Conceptualization; Methodology; Formal analy-
sis; Writing - Review & Editing. Antti Knutas: Conceptualization; Metholodogy; Writing - Review & Editing.

Funding  Open access funding provided by Tampere University (including Tampere University Hospital).

Data Availability  The data used in this study is not publicly available due to the nature of the privacy state-
ment agreed upon by the study participants.

Declarations

Ethical approval  The research was based on informed consent, the physical integrity of the participants was
not involved, the participants were not minors, the research did not expose the participants to risk of strong
stimuli, mental harm, or safety, and no separate ethical committee approval was required as per our institu-
tions’ guidelines.

Informed consent  Participation was based on informed consent.

Conflict of Interest  The authors have no competing interests to declare that are relevant to the content of this
article.

Competing interests  The authors have no competing interests to declare that are relevant to the content of
this article.

Clinical Trial Number  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​​​/​​/​c​r​e​a​t​i​​v​e​c​​o​m​m​o​​n​​s​.​​o​r​​​g​/​l​i​c​e​n​s​​e​s​/​​b​​y​/​4​.​0​/.

References
ACM (2015) Curriculum guidelines for undergraduate degree programs in software engineering. Technical

report, New York, NY, USA. The Joint Task Force on Computing Curricula
ACM/AIS (2020) A competency model for undergraduate programs in information systems. Technical

report. The Joint ACM/AIS IS2020 Task Force
ACM/IEEE (2013) Computer science curricula 2013: Curriculum guidelines for undergraduate degree pro-

grams in computer science. Technical report, New York, NY, USA. Joint Task Force on Computing
Curricula, Association for Computing Machinery (ACM) and IEEE Computer Society

Ahadi A, Behbood V, Vihavainen A, Prior J, Lister R (2016a) Students’ syntactic mistakes in writing seven
different types of SQL queries and its application to predicting students’ success. In: Proceedings of the
47th ACM technical symposium on computing science education (SIGCSE). New York, New York,
USA, ACM Press, pp 401–406

Ahadi A, Prior J, Behbood V, Lister R (2016b) Students’ semantic mistakes in writing seven different types of
SQL queries. In: Proceedings of the 2016 ACM conference on innovation and technology in computer
science education (ITiCSE). New York, New York, USA, ACM Press, pp 272–277

Ahmed T, Ledesma NR, Devanbu P (2022) Synshine: improved fixing of syntax errors. IEEE Trans Softw
Eng 49(4):2169–2181

1 3

 136   Page 28 of 31

Empirical Software Engineering (2025) 30:136

Barik T, Ford D, Murphy-Hill E, Parnin C (2018) How should compilers explain problems to developers?
In: Proceedings of the 2018 26th ACM joint meeting on European software engineering conference
and symposium on the foundations of software engineering, ESEC/FSE 2018. New York, NY, USA,
Association for Computing Machinery, pp 633–643

Barik T, Smith J, Lubick K, Holmes E, Feng J, Murphy-Hill E, Parnin C (2017) Do developers read compiler
error messages? In: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
pp 575–585

Becker BA (2016) An effective approach to enhancing compiler error messages. In: Proceedings of the 47th
ACM technical symposium on computing science education, SIGCSE ’16. New York, NY, USA, Asso-
ciation for Computing Machinery, pp 126–131

Becker BA, Denny P, Pettit R, Bouchard D, Bouvier DJ, Harrington B, Kamil A, Karkare A, McDonald C,
Osera P-M, Pearce, JL, Prather J (2019) Compiler error messages considered unhelpful. In: Proceedings
of the working group reports on innovation and technology in computer science education (ITiCSE).
ACM

Becker BA, Glanville G, Iwashima R, McDonnell C, Goslin K, Mooney C (2016) Effective compiler error
message enhancement for novice programming students. Comput Sci Educ 26(2–3):148–175

Brass S, Goldberg C (2006) Semantic errors in SQL queries: a quite complete list. J Syst Softw 79(5):630–644
Cass S (2022) SQL should be your second language. IEEE Spectr 59(10):20–21
Cauley KM, McMillan JH (2010) Formative assessment techniques to support student motivation and

achievement. Clearing House J Educ Strateg Issues Ideas 83(1):1–6
Codd EF (1970) A relational model of data for large shared data banks. Commun ACM 13(6):377–387
Costa DAd, Grattan N, Stanger N, Licorish SA (2023) Studying the characteristics of SQL-related develop-

ment tasks: an empirical study. Empir Softw Eng 28(3)
Denny P, Luxton-Reilly A, Carpenter D (2014) Enhancing syntax error messages appears ineffectual. In: Pro-

ceedings of the 2014 conference on innovation & technology in computer science education, ITiCSE.
New York, NY, USA, Association for Computing Machinery, pp 273–278

Dix A, Finlay J, Abowd GD, Beale R (2005) Human-computer interaction. Prentice-Hall
Donahue G (2001) Usability and the bottom line. IEEE Softw 18(1):31–37
Dong T, Khandwala K (2019) The impact of “cosmetic” changes on the usability of error messages. In:

Extended abstracts of the 2019 CHI conference on human factors in computing systems. ACM
Hannebauer C, Hesenius M, Gruhn V (2018) Does syntax highlighting help programming novices? In: Pro-

ceedings of the 40th international conference on software engineering. ACM
ISO/IEC (2016a). ISO/IEC 9075-1:2016, “SQL - Part 1: Framework”
ISO/IEC (2016b). ISO/IEC 9075-2:2016, “SQL - Part 2: Foundation”
Kantorowitz E, Laor H (1986) Automatic generation of useful syntax error messages. Softw Pract Experience

16(7):627–640
Karvelas I, Li A, Becker BA (2020) The effects of compilation mechanisms and error message presentation

on novice programmer behavior. In: Proceedings of the 51st ACM technical symposium on computer
science education. pp 759–765

Kummerfeld SK, Kay J (2003) The neglected battle fields of syntax errors. In: Proceedings of the fifth Aus-
tralasian conference on computing education - vol 20, ACE ’03. AUS, Australian Computer Society,
Inc, pp 105–111

Miedema D, Aivaloglou E, Fletcher G (2021) Identifying SQL misconceptions of novices: findings from a
think-aloud study. In: Proceedings of the 17th ACM conference on international computing education
research. New York, NY, USA, Association for Computing Machinery, pp 355–367

Miedema D, Fletcher G, Aivaloglou E (2022a) Expert perspectives on student errors in SQL. ACM Transac-
tions on Computing Education

Miedema D, Fletcher G, Aivaloglou E (2022b) So many brackets! an analysis of how SQL learners (mis)
manage complexity during query formulation. In: Proceedings of the 30th IEEE/ACM international
conference on program comprehension, ICPC ’22. New York, NY, USA, Association for Computing
Machinery, pp 122–132

Migler A, Dekhtyar A (2020) Mapping the SQL learning process in introductory database courses. In: Pro-
ceedings of the 51st ACM technical symposium on computer science education, SIGCSE ’20. New
York, NY, USA, Association for Computing Machinery, pp 619–625

Nienaltowski M-H, Pedroni M, Meyer B (2008) Compiler error messages: What can help novices? SIGCSE
Bull 40(1):168–172

1 3

Page 29 of 31  136

Empirical Software Engineering (2025) 30:136

Pane J, Myers B, Miller L (2002) Using HCI techniques to design a more usable programming system. In:
Proceedings IEEE 2002 symposia on human centric computing languages and environments. IEEE
Computing Society

Pasupuleti KK, Li J, Su H, Ziauddin M (2023) Automatic SQL error mitigation in Oracle. Proc VLDB
Endowment 16(12):3835–3847

Pettit RS, Homer J, Gee R (2017) Do enhanced compiler error messages help students? results inconclu-
sive. In: Proceedings of the 2017 ACM SIGCSE technical symposium on computer science education,
SIGCSE ’17. New York, NY, USA, Association for Computing Machinery, pp 465–470

Prather J, Pettit R, McMurry KH, Peters A, Homer J, Simone N, Cohen, M (2017) On novices’ interaction
with compiler error messages: a human factors approach. In: Proceedings of the 2017 ACM conference
on international computing education research, ICER ’17. New York, NY, USA, Association for Com-
puting Machinery, pp 74–82

Presler-Marshall K, Heckman S, Stolee K (2021) (SQLRepair: identifying and repairing mistakes in student-
authored SQL queries. In: 2021 IEEE/ACM 43rd international conference on software engineering:
software engineering education and training (ICSE-SEET). IEEE, pp 199–210

Reisner P (1977) Use of psychological experimentation as an aid to development of a query language. IEEE
Trans Softw Eng SE–3(3):218–229

Reisner P, Boyce RF, Chamberlin DD (1975) Human factors evaluation of two data base query languages. In:
Proceedings of the national computer conference and exposition AFIPS ’75. ACM Press

Rennels L, Chasins SE (2023) How domain experts use an embedded DSL. Proc ACM Program Lang
7(OOPSLA2)

Sarkar A (2015) The impact of syntax colouring on program comprehension. In: Proceedings of the 26th
annual conference of the psychology of programming interest group (PPIG 2015)

Seo H, Sadowski C, Elbaum S, Aftandilian E, Bowdidge R (2014) Programmers’ build errors: a case study
(at Google). In: Proceedings of the 36th international conference on software engineering. pp 724–734

Shneiderman B (1982) Designing computer system messages. Commun ACM 25(9):610–611
Shneiderman B, Plaisant C, Cohen MS, Jacobs S, Elmqvist N, Diakopoulos N (2016) Designing the user

interface: strategies for effective human-computer interaction. Pearson
Smelcer JB (1995) User errors in database query composition. Int J Hum Comput Stud 42(4):353–381
Taipalus T (2020) Explaining causes behind SQL query formulation errors. In: 2020 IEEE frontiers in educa-

tion conference (FIE). pp 1–9
Taipalus T (2023a) Query execution plans and semantic errors: usability and educational opportunities. In:

Extended abstracts of the 2023 CHI conference on human factors in computing systems, CHI EA ’23.
New York, NY, USA, Association for Computing Machinery

Taipalus T (2023b) SQL: a Trojan horse hiding a decathlon of complexities. In: Proceedings of the 2nd
international workshop on data systems education, DataEd ’23. New York, NY, USA, Association for
Computing Machinery, pp 9–13

Taipalus T, Grahn H (2023a) Framework for SQL error message design: a data-driven approach. ACM Trans
Softw Eng Methodol 33

Taipalus T, Grahn H (2023) New SQL database management system compiler errors: effectiveness and use-
fulness. Int J Human-Comput Interact 39:3936–3947

Taipalus T, Grahn H (2024) Building blocks towards more effective SQL error messages. In: Proceedings of
the 2024 on innovation and technology in computer science education V. 1, ITiCSE 2024. New York,
NY, USA, Association for Computing Machinery, pp 241–247

Taipalus T, Grahn H, Ghanbari H (2021) Error messages in relational database management systems: a com-
parison of effectiveness, usefulness, and user confidence. J Syst Softw 181:111034

Taipalus T, Grahn H, Ritonummi S, Siitonen V, Vartiainen T, Zhidkikh D (2025) Novice perceptions on
effective elements of PostgreSQL error messages. ACM Transactions on Computing Education, Just
Accepted

Taipalus T, Perälä P (2019) What to expect and what to focus on in SQL query teaching. In: Proceedings
of the 50th ACM technical symposium on computer science education (SIGCSE), SIGCSE ’19. New
York, NY, USA, ACM, pp 198–203

Taipalus T, Seppänen V (2020) SQL education: a systematic mapping study and future research agenda. ACM
Trans Comput Educ 20(3)

Taipalus T, Siponen M, Vartiainen T (2018) Errors and complications in SQL query formulation. ACM Trans
Comput Educ 18(3):15:1-15:29

1 3

 136   Page 30 of 31

Empirical Software Engineering (2025) 30:136

Thiselton E, Treude C (2019) Enhancing Python compiler error messages via Stack. In: 2019 ACM/IEEE
international symposium on empirical software engineering and measurement (ESEM). pp 1–12

Traver VJ (2010) On compiler error messages: What they say and what they mean. Advances in Human-
Computer Interaction, pp 1–26

Wang J, Chen S, Tang Z, Lin P, Wang Y (2024) False positives and deceptive errors in SQL assessment: a
large-scale analysis of online judge systems. ACM Trans Comput Educ, Just Accepted

Welty C (1985) Correcting user errors in SQL. Int J Man Mach Stud 22(4):463–477
Wrenn J, Krishnamurthi S (2017) Error messages are classifiers: a process to design and evaluate error

messages. In: Proceedings of the 2017 ACM SIGPLAN international symposium on new ideas, new
paradigms, and reflections on programming and software. ACM

Zhou Z, Wang S, Qian Y (2021) Learning from errors: exploring the effectiveness of enhanced error mes-
sages in learning to program. Front Psychol 12

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1 3

Page 31 of 31  136

	﻿Enhanced SQL error messages facilitate faster error fixing
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Background
	﻿2.1﻿ ﻿Errors in SQL Query Formulation
	﻿﻿2.2﻿ ﻿Error Message Design Guidelines
	﻿﻿2.3﻿ ﻿Effects of Enhanced Error Messages

	﻿﻿3﻿ ﻿Research Setting
	﻿3.1﻿ ﻿Study Participants
	﻿3.2﻿ ﻿Data Collection
	﻿3.3﻿ ﻿Data Preparation
	﻿3.4﻿ ﻿Hypotheses

	﻿﻿4﻿ ﻿Results
	﻿4.1﻿ ﻿Redesigned Error Messages Were Perceived to Help in Finding the Errors
	﻿﻿4.2﻿ ﻿It was Inconclusive Whether the Redesigned Error Messages were Perceived to Help in Fixing the Errors
	﻿4.3﻿ ﻿Redesigned Error Messages were Perceived to Increase Error Recovery Confidence
	﻿4.4﻿ ﻿It was Inconclusive Whether the Redesigned Error Messages Helped in Successfully Fixing the Errors
	﻿4.5﻿ ﻿Redesigned Error Messages Resulted in Faster Error Fixing
	﻿4.6﻿ ﻿Test-by-test Results

	﻿﻿5﻿ ﻿Discussion
	﻿5.1﻿ ﻿Discussion of the Results
	﻿5.2﻿ ﻿Practical Implications
	﻿5.3﻿ ﻿Threats to Validity
	﻿5.4﻿ ﻿Future Directions

	﻿﻿6﻿ ﻿Conclusion
	﻿﻿Appendix A: Test Statistics
	﻿﻿Appendix B: Error Messages
	﻿References

