
Building Blocks Towards More Effective SQL Error Messages
Toni Taipalus

toni.taipalus@tuni.fi

Tampere University

Tampere, Finland

University of Jyväskylä

Jyväskylä, Finland

Hilkka Grahn

hilkka.grahn@jyu.fi

University of Jyväskylä

Jyväskylä, Finland

ABSTRACT

Reading and interpreting error messages are significant aspects of

a software developer’s work. Despite the importance and preva-

lence of error messages, especially for novices, SQL compiler error

messages from various relational database management systems

have seen limited development since their inception. This lack of

progress may stem from the fact that it is not well-understood what

constitutes an effective error message. With data from 568 partici-

pants across three student cohorts, we investigate whether novel

SQL error message design guidelines can explain success in fixing

SQL syntax errors. The results indicate that some of the guidelines

indeed serve as building blocks toward more effective SQL error

messages for novices. However, error messages that adhered to

certain guidelines showed inconclusive or negative results. These

findings can be applied to iterate on SQL error messages in SQL

learning environments or SQL compilers.

CCS CONCEPTS

• Applied computing → Education; • Social and professional

topics → Computing education; • Information systems →
Query languages; • Human-centered computing→ Empirical
studies in HCI .

KEYWORDS

SQL, error, error message, compiler, database, database manage-

ment system, relational database, human-computer interaction,

computing education, novice, error message design

ACM Reference Format:

Toni Taipalus and Hilkka Grahn. 2024. Building Blocks Towards More Effec-

tive SQL Error Messages. In Proceedings of the 2024 Innovation and Technol-
ogy in Computer Science Education V. 1 (ITiCSE 2024), July 8–10, 2024, Milan,
Italy. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3649217.

3653552

1 INTRODUCTION

A significant aspect of software development involves reading and

interpreting compiler error messages [2]. However, it is widely

acknowledged that error messages are often unhelpful in resolving

errors [5]. Several studies have proposed guidelines for design-

ing general system messages [14], particularly for programming

This work is licensed under a Creative Commons Attribution

International 4.0 License.

ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0600-4/24/07.

https://doi.org/10.1145/3649217.3653552

language error messages [4, 23], especially within the realm of

computing education. Nevertheless, what contributes to more effec-

tive error messages remains largely unclear. Besides programming

language compilers, other computer languages, such as query and

markup language compilers and interpreters, produce error mes-

sages that are similarly unhelpful. SQL, in particular, falls into this

category [15]. SQL is a challenging language to learn even without

confusing error messages [16].

The goal of this study is to investigate whether novel SQL error

message design guidelines [17] related to the clarity and compre-

hensibility of SQL error messages can explain the success or failure

of participants in fixing SQL syntax errors. The resulting multilevel

binary logistic regression model indicates that five of the nine de-

sign guidelines have a statistically significant association with the

success or failure of error fixing. For instance, the model reveals

that simply formatting error messages to place the most important

information first increases the odds of successfully fixing a syntax

error by a factor of 3.8. Additionally, the model suggests that as

much as 15% of success in fixing syntax errors is attributed to in-

dividual differences. These findings can help us understand which

aspects of SQL error messages assist or hinder learners in query

formulation and how error messages should be crafted to cater to

the needs of novice users in error recovery.

The rest of this study is structured as follows. In the next section,

we discuss error messages and the novel SQL error messages design

guidelines. In Section 3 we detail our data collection and partici-

pants, and in Section 4 present our resulting model. In Section 5

we discuss threats to validity, speculate the reasons behind the

model, and provide practical implications of the results. Section 6

concludes the study.

2 BACKGROUND

2.1 System messages

It is rather widely accepted that system messages, i.e., natural lan-

guage messages output by various programs, are problematic in

many different ways [8, 12, 23]. In 1982, Shneiderman [14] intro-

duced five guidelines for designing general system messages: be
brief, be positive, be constructive, be specific, and be comprehensible. It
seems justified to argue that the introduction of such simple guide-

lines propounds the view that system messages over 40 years ago

were not brief, positive, constructive, specific, or comprehensible.

Unfortunately, it seems that even these simple guidelines have not

been widely adopted today [17].

Based on professional opinions and empirical research, the gen-

eral system message guidelines have been further particularized

241

https://orcid.org/0000-0003-4060-3431
https://orcid.org/0000-0001-7567-7807
https://doi.org/10.1145/3649217.3653552
https://doi.org/10.1145/3649217.3653552
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649217.3653552
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649217.3653552&domain=pdf&date_stamp=2024-07-03


ITiCSE 2024, July 8–10, 2024, Milan, Italy Toni Taipalus and Hilkka Grahn

Find the most
common SQL

syntax errors [20]

Create an SQL
syntax error

test suite [19]

Formulate guidelines
on how error messages

should be designed [17]

Test whether old
error message guidelines
explain error message
effectiveness [17]

Find DBMSs with the
most effective

error messages [18, 19]

Test whether new
error message guidelines
explain error message

effectiveness

this study

Figure 1: Research goals and questions of the most relevant prior studies leading up to this study, which is depicted in the

rightmost rectangle

[23] and composed [4] especially for programming language com-

piler error messages. These guidelines suggest, e.g., clarity and
brevity, using programmer language and locality of error messages

[23], as well as showing examples and allowing dynamic interac-
tion in error recovery [4]. Compared to the number of suggested

improvements for programming language error messages, the num-

ber of studies providing quantitative evidence on the effects of

enhanced error messages is on par with the amount of anecdotal ev-

idence presented [4]. Empirical studies have shown that enhanced

programming language error messages may reduce the number

of committed errors [e.g., 3], and that the end-users may prefer

enhanced error messages [e.g., 1, 21]. Many of these guidelines have

similarities, but also contradict each other. However, several stud-

ies have reported inconclusive or negative results [e.g., 9, 10, 13].

Recent works have also investigated factors such as focusing on

error message readability [12] and the use of large language models

in enhancing programming language error messages [7].

2.2 SQL error messages

Compared to programming language error messages, error mes-

sages produced by the SQL compilers of various database manage-

ment systems (DBMS) have received little scientific attention. For

example, a comprehensive literature review from 2019 lists over

300 scientific studies on programming language error messages

[4], while studies on SQL (or query languages in general) error

messages number under a dozen.

Fig. 1 outlines particularly influential prior studies that have

contributed to our study. We will discuss these studies in a chrono-

logical order, highlighting their contributions to this work. In 2018,

a large-scale empirical study analysed errors that novices commit-

ted in SQL query formulation [20]. The analysis uncovered, among

other things, the most frequent syntax errors, as well as syntax

errors that were the most difficult to fix (i.e., the most persistent
syntax errors). Based on these findings, a subsequent study created

an SQL syntax error test suite consisting of sixteen erroneous SQL

queries [19]. Each query contained one of the sixteen most per-

sistent syntax errors. The purpose of the test suite was to enable

testing of how well study participants can fix syntax errors given a

corresponding error message, and how the participants would rate

the error messages according to several subjective metrics.

The test suite has been used in several studies on SQL error mes-

sages. One study used the test suite to compare the error messages

of four traditional relational DBMSs using several metrics such as

error fixing success rate, as well as metrics pertaining to partici-

pants’ subjective experiences such as error recovery confidence and

error message usefulness [19]. Another study used the test suite to

compare error messages of four NewSQL systems [18]. NewSQL

systems are relational DBMSs that are built from the ground-up

using some best practices introduced by NoSQL systems. Finally, a

recent, mixed-methods study [17] used the test suite in coding the

respective error messages of eight DBMSs according to Shneider-

man’s [14] general systemmessage guidelines. The results indicated

that the general system message guidelines poorly explain SQL er-

ror message effectiveness on syntax error fixing. The same study

collected qualitative data on what an SQL error message should

contain, and formulated a framework of nine guidelines for SQL

error message design.

2.3 SQL error message guidelines

The framework for SQL error message design [17] consists of nine

guidelines divided into four groups. The where group instructs

the error message to provide line number (guideline #1) on which

the error occurs. Due to the nature of SQL, line breaks are not

syntactically necessary, and the guidelines also instruct to specify
error position (#2). This is done by a cadet symbol in some DBMSs

(cf. Fig. 2c, second line).

The what group advises that the error message should both

explain what causes the error (#3) and explain why the error occurs
(#4). For example, an error message should say that an erroneous

SQL statement contained more than one WHERE clause (i.e., this

caused the error), and that placing more than one WHERE in the

same statement is not necessary, as multiple expressions should

be separated with AND and OR operators (i.e., why this is an error).

242



Building Blocks Towards More Effective SQL Error Messages ITiCSE 2024, July 8–10, 2024, Milan, Italy

SELECT id, name , status
FROM project
WHERE name LIKE ('H%', 'J%', 'K%')
AND manager_id IN

(SELECT id
FROM employee
WHERE sname = 'Smith ');

(a) An erroneous SQL query (test suite test T04) [19]

ORA -00907: missing right parenthesis

(b) Oracle Database error message

Line 3: name LIKE ('H%', 'J%', 'K%')
^

LIKE cannot be used with a list of values.

HINT: If you are using wildcards , consider using
logical operators AND or OR between
expressions. Alternatively , if you are not
using wildcards , try replacing LIKE with IN.

EXAMPLES:
SELECT *
FROM product
WHERE name LIKE 'A%'
OR name LIKE 'B%';

SELECT *
FROM product
WHERE name IN ('Alpha ', 'Beta ');

(c) Iterated error message [17]

Figure 2: An erroneous SQL query and corresponding error

message from Oracle Database, and a corresponding error

message iterated according to the SQL error message design

guidelines [17]

Additionally, most important information should be placed first in
the error message (#5).

The how group guides the error message towards constructive

suggestions. The error message should provide suggestions on how
to fix the error (#6), and provide working examples of similar query
concepts (#7). Arguably, these guidelines contradict Shneiderman’s

guideline of being brief, yet the framework justifies these based on

empirical evidence.

Finally, two guidelines cover the nature of the error message as

a whole. These guidelines advise to remove unnecessary elements
(#8) such as error codes and host names, or move them to the end

of the message, as per guideline #5. Finally, the guidelines instruct

to use plain English (#9). Fig. 2 shows an example of the application

of the guidelines on an SQL error message.

3 RESEARCH SETTING

3.1 Data collection instrument

The test suite [19], i.e., our data collection instrument in this study

consists of sixteen tests. One test consists of five elements: (i) a
database schema diagram representing the underlying database, (ii)
a task in natural language, e.g., find the IDs, names and status of
projects which start with an H, J, or K, and have a manager whose

surname is Smith, (iii) an SQL query that corresponds to the task,

but contains a syntax error, (iv) a respective error message yielded

by a DBMS, and (v) a free-form text field in which the participant

is asked to fix the syntax error.

The test suite can be customized in various ways. One way to

customize the test suite is to incorporate error messages from dif-

ferent DBMSs in order to, e.g., compare the effectiveness of error

messages of different DBMSs with each other, as described in Sec-

tion 2.2. We chose to utilize the modified test suites reported in

previous studies [18, 19], which incorporate error messages from

a total of eight different relational DBMSs: MySQL, PostgreSQL,

Oracle Database, SQL Server, NuoDB, CockroachDB, SingleStore,

and VoltDB. Effectively, this means that we utilize eight different

test suites, which differ from each other only by the error messages

they contain.

3.2 Participants

We recruited study participants from a database and data man-

agement course given at the authors’ university. The course fol-

lowed AIS/ACM curriculum guidelines for information systems

[22] course on databases, and consisted of lectures and practical

exercises on topics such as Entity-Relationship modeling, database

normalization, and SQL. We recruited the participants mid-course,

after all SQL topics had been covered. A total of 568 participants

were recruited from a total of three cohorts, n = 302, n = 184 and n
= 82, respectively, an overall response rate of 78%.

3.3 Data collection

Potential participants who showed willingness to participate in the

study were shown a full privacy and data collection statement prior

to participation. Participation yielded no advantages or disadvan-

tages, and was voluntary. After a participant chose to participate,

they were randomly assigned to one of the eight test suites, i.e.,

one participant was assigned to the test suite containing error mes-

sages output by MySQL, another to a test suite containing error

messages output by PostgreSQL, etc. Next, a participant was shown

one test in the test suite of sixteen tests. After the participant had

completed the test, the next test was shown until all sixteen tests

in the assigned test suite were completed. All tests were shown in

random order for each participant.

3.4 Data preparation

After data collection, we coded all 128 error messages (16 tests ×
8 DBMSs) in the tests suites according to the nine error message

guidelines. That is, we considered whether an error message ad-

heres to each of the guidelines. With the exception of guideline

#7 (provide working examples of similar query concepts), all error
message guidelines were adhered to by at least one of the 128 error

messages. Since guideline #7 was constant in all error messages,

it was omitted from the subsequent analysis. Therefore, each er-

ror message received eight codes. The coding was binary. We also

considered the correctness of each submitted, fixed SQL query

by running the queries through their respective DBMSs, e.g., the

queries submitted by participants in the MySQL test suite were run

on MySQL to assess their correctness. If a query contained at least

243



ITiCSE 2024, July 8–10, 2024, Milan, Italy Toni Taipalus and Hilkka Grahn

Table 1: Multilevel binary logistic regression model predicting success in fixing the queries; the values in the expected odds

column indicate how error messages adhering to a particular guideline explain error fixing success – values below one indicate

that adhering to the guideline decreases the odds of successfully fixing errors, and values greater than one indicate the opposite;

confidence intervals (CI) are for expected odds

Fixed effects Coefficient Std. error p Exp. odds 95% CI (lower) 95% CI (upper)

Intercept 1.541 .066 < .001 4.667 4.087 5.329

Remove unnecessary elements 1 -1.405 .273 < .001 .245 .144 .419

Remove unnecessary elements 0 0*

Place the most important information first 1 1.345 .284 < .001 3.839 2.201 6.697

Place the most important information first 0 0*

Explain why the error occurs 1 -.401 .067 < .001 .669 .587 .763

Explain why the error occurs 0 0*

Provide suggestions on how to fix the error 1 .369 .092 < .001 1.447 1.209 1.732

Provide suggestions on how to fix the error 0 0*

Explain what causes the error 1 .174 .065 .008 1.190 1.047 1.353

Explain what causes the error 0 0*

Random effects σ
2

Std. error p

Intercept (participant) .585 .060 < .001

Intraclass correlation (ICC)

Participant 0.151

*The factor above is compared to the factor that gets the value of zero (i.e., intercept)

one syntax error, the query was marked incorrect, i.e., the partici-

pant had failed to fix the query. If a query was deemed syntactically

correct by the DBMS, we evaluated the query’s logical correctness

without any computational automation. If a query contained at

least one logical or semantic error, the query was marked incorrect.

If the query contained no errors, the query was marked correct.

The error message coding served as independent variables (i.e.,

fixed factors or predictors) and query correctness as the dependent

variable (i.e., predicted variable) in our subsequent analysis.

4 RESULTS

We developed a multilevel binary logistic regression model to ex-

amine the influence of the previously explained SQL error message

design guidelines on the probability of query fixing accuracy. We

conducted the analysis using IBM SPSS 28.0. Multilevel binary lo-

gistic regression is a statistical approach utilized when the outcome

variable (i.e., success in query fixing) is binomial, with 0 indicating

that the query was not fixed correctly, and 1 that the query was

fixed correctly. An α-level of .05 was chosen.

The model comprises 9,088 attempts to fix queries contributed

by 568 participants. In the intercept-only model, we found the intr-

aclass correlation (ICC) to be 14.6%. This indicates the appropriate-

ness of employing a multilevel model, as the ICC value significantly

deviates from zero [cf. e.g., 11]. The ICC measures the proportion of

the total variation in the outcome that can be attributed to between-

group differences – in this case, differences between participants.

According to the intercept-only model, the unconditional probabil-

ity of a query being fixed successfully was 80.8%.

As fixed factors, we added the codings of eight error message

guidelines that were previously discussed. Among these, three

(namely, providing line number, specifying the error position, and
using plain English) did not show statistical significance as predic-

tors, and were consequently removed from the model. In the final

model, the expected success rate for successful query fixing was

82.4%. The final model is presented in Table 1.

The intercept represents the baseline probability of an SQL query

being fixed successfully. In this case, the odds of a successful fix are

approximately 4.7 times higher than the odds of an unsuccessful

fix. The strongest predictor for query success in the model was re-
move unnecessary elements. However, the negative regression slope

suggests that when the error message contained no unnecessary

elements, the odds of a query being fixed successfully decreased by

approximately 75.5% (expected odds = .245). The second strongest

predictor was place the most important information first, which in-

dicates that queries with this factor have significantly higher odds

(3.839) of being fixed successfully. The third strongest predictor

was explain why the error occurs. However, the regression slope for

this variable is negative, meaning that when this variable is present

in the error message, it decreases the likelihood of successful fix.

The next predictor, provide suggestions on how to fix the error, had
a positive regression slope. This suggests that when suggestions

in the error messages are present, the odds of successfully fixing

the query are 1.447 times higher compared to when suggestions

are not present. The final predictor in the model is explain what
causes the error, which indicates that with an explanation in the

error messages, the odds of fixing the query successfully are 1.190

time higher that without an explanation. The ICC in the final model

was 0.151, indicating that approximately 15.1% of the total variation

in query fixing success is due to differences between participants.

244



Building Blocks Towards More Effective SQL Error Messages ITiCSE 2024, July 8–10, 2024, Milan, Italy

5 DISCUSSION

5.1 General discussion

Overall, the results show that SQL error messages that follow some

guidelines facilitate successful error recovery, while following other

guidelines decrease query fixing success. Arguably, some of these

results appear counter-intuitive. Such observationmay be explained

by the ICC, which suggests that a significant amount of successful

error recovery rests on individual differences, i.e., some error mes-

sage design guidelines help some learners while hindering others.

Designing error message design guidelines is difficult due to

complexity of the tasks and individual differences. Despite the fact

that some design guidelines are formulated based on empirical data,

the guidelines may be in conflict with other guidelines or even

with themselves [6]. For example, Shneiderman’s [14] guidelines

for constructiveness and brevity may be seen to contradict each

other. It has been suggested that different design guidelines are

not to be followed strictly, but for limiting design space away from

unusable systems [6, p. 259]. In other words, design guidelines

provide perspective for the designer to consider important aspects

of error messages.

5.2 Implications guideline-by-guideline

5.2.1 Provide line number. The lack of statistical significance sug-

gests that line number alone may not explain error fixing success.

It is possible that other factors play a more crucial role here, or

that the relatively short and simple SQL statements in the test suite

diminished the importance of line numbers in the error messages.

In order to assess this factor further, the SQL statements in the test

suite could be made more complex, while still keeping the syntax

errors the same. This could be done by increasing the complexity

of the database schema and the tasks.

5.2.2 Specify error position. Similar to the previous guideline, the

lack of statistical significance here might indicate that participants

rely on other cues to identify error location, or that the relative

simplicity of the SQL statements in the test suite diminish the

impact of this factor. It may be that some of the error messages

implied the error position (e.g., syntax error near “,” ), and since the

erroneous SQL statement contained commas only in the SELECT
clause, finding the error position was relatively easy.

5.2.3 Explain what causes the error. This factor increasing the odds
of success by 1.190 suggests that explaining the cause of the error

helps participants understand the underlying issue better. This

additional context likely aids in more accurate and efficient error

resolution.

5.2.4 Explain why the error occurs. The decrease in the odds of

success by 1.331 (i.e., expected odds = .669) could imply that overly

detailed explanations about why the error occurred might confuse

participants or distract them from the task of fixing the error. It is

possible that a balance between clarity and brevity is essential in

such explanations. However, the logistic regression model built in

a previous study [17] indicated that error message brevity (as per

Shneiderman’s definition [14]) fails to explain SQL error message

fixing success in 15 out of 16 cases.

5.2.5 Place the most important information first. The significant
increase in odds by 3.839 suggests that organizing error messages

with the most critical information upfront greatly benefits novice

participants. According to the qualitative analysis that formed the

basis for the error message design guidelines, the most important

pieces of information are the error position, presented as a line

number or by replicating the line on which the error occurs, as well

as the specific error position, as well as information on what causes

the error [17].

5.2.6 Provide suggestions on how to fix the error. This factor increas-
ing the odds of success by 1.447 aligns with the arguably intuitive

idea that offering concrete solutions or hints for fixing the error

can guide participants effectively. Such guidance likely reduces the

trial-and-error aspect of error recovery.

5.2.7 Provide working examples of similar query concepts. Since
none of the coded 128 error messages adhered to this guideline,

the coding in the data was constant, and this factor was omitted

from the model entirely. According to the practical examples of

the applications of this guideline, the guideline does not instruct

dynamic suggestions, i.e., the suggestions provided in the new error

messages are concrete SQL examples, but not necessarily related

to the current task but rather to the query concepts such as using

LIKE or GROUP BY.

5.2.8 Remove unnecessary elements. The decrease in the odds of

success by 1.755 (i.e., expected odds = .245) suggests that the removal

of potentially helpful information may hinder participants. It is

possible that some non-essential-deemed details can still aid in

understanding and resolving the error. What separates many of the

eight DBMSs studied here is that error messages of PostgreSQL,

CockroachDB and VoltDB contain no error codes or environmental

variables. The error messages of the rest of the DBMSs either always

or sometimes contain error codes, and these error codes are always

placed at the beginning of the error message. One reason why

adherence to this guideline does not positively affect error fixing

success might be that these unnecessary elements are merely small

parts of the error message. The examples of iterated error messages

[17] never contain error codes, possibly due to the fact that the

iterated error messages are not produced by any particular DBMS,

but rather general SQL error messages.

5.2.9 Use plain English. The lack of statistical significance here

could indicate that, in this specific research context, the use of plain

English in error messages does not have a measurable impact on

participants’ ability to fix syntax errors. It is possible that the novice

participants in this study were accustomed enough to technical SQL

terms and were able to work with the error messages regardless of

whether technical or plain language was used.

5.3 Practical implications

To our understanding, this is the first time multilevel modeling has

been applied in database education research, and we encourage

computing education researchers to utilize the method in under-

standing the effects of individual student differences. In this study,

the increase in ICC from 14.6% to 15.1% suggests that the explana-

tory variables included in the multilevel regression model explain

245



ITiCSE 2024, July 8–10, 2024, Milan, Italy Toni Taipalus and Hilkka Grahn

some of the variation in query fixing success, but there are still

individual differences among participants that affect the outcome.

The increase signifies that the model accounts for more of the vari-

ation, but some of the variation remains unexplained, which is

typical in complex datasets. This simply means that some students

are naturally better at fixing errors. Yet, considering the predictors

and the increase in ICC, this means that while some students are

naturally better at fixing errors, some students do better because

they receive better error messages. However, there are still some

differences we cannot explain. Perhaps the liveliness of the research

field surrounding error messages in general explains how difficult

it is to understand what is an effective error message, despite how

easy it seems to point out what is problematic in error messages.

Despite the indications that subjective metrics of what is per-

ceived helpful in an SQL error message seem to correlate with

objective metrics such as error fixing success [18], the results of

this study may indicate that the aspects novices seem to value in

SQL error messages may not necessarily all be aspects that facilitate

error fixing success. We speculated in Section 5.2 that some of the

results may be explained by relatively simple SQL statements in

the test suite. It has also been speculated that binary error fixing

success may not be the most fitting metric to measure error mes-

sage effectiveness [18, 19], and using e.g., time taken to fix errors

may yield more detailed results.

5.4 Limitations and threats to validity

A threat to validity regarding the test suite is that it introduces

an unnatural environment in which errors are fixed. Typically, a

query writer engages in a feedback loop with the DBMS by writing

a query, receiving an error message, and repeating the process until

the query compiles and is syntactically and logically correct. With

the test suite, participants do not write the initial queries them-

selves, but the queries are provided by the test suite. Additionally,

participants do not receive feedback whether they fixed the query

correctly. However, it is understandable that by letting participants

formulate the initial queries, it would be more difficult to control

that the participants indeed commit syntax errors. This would, in

turn, introduce more confounding variables.

Although this study merely considers the error message qualities

of eight relational DBMSs, these DBMSs arguably represent some of

themost popular traditional relational and NewSQL systems. All the

test suites used in this study are publicly available as supplementary

files of previously published studies [18, 19].

6 CONCLUSION

Despite the age of several SQL compilers, it remains unclear what

makes an SQL error message effective. In this study, we explored

whether adhering to specific SQL error message design guidelines

plays a role in the effectiveness of SQL error messages and whether

this adherence can predict the success or failure of fixing SQL

syntax errors. The results indicate that placing the most important

information first in the error message, providing suggestions on

how to fix the error, and explaining what causes the error contribute

to error messages that enhance the success of fixing SQL syntax

errors. The results suggest that when error messages adhere to these

guidelines, they facilitate successful error fixing. However, the study

results do not fully explain the role of some guidelines, raising the

possibility that either some of the guidelines are ineffective, the test

suite statements might be too simple, or that error fixing success

may not be a suitable metric to measure the effectiveness of the

error message design guidelines. The results yielded by this study

may be utilized in formulating more effective SQL error messages

in SQL compilers and learning environments.

ACKNOWLEDGMENTS

The authors thank all who participated in the study, and the partic-

ipants of the Human Factors Impact of Programming Error Messages
(22052) Dagstuhl Workshop for fruitful discussions.

REFERENCES

[1] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How

Should Compilers Explain Problems to Developers?. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 633–643.

https://doi.org/10.1145/3236024.3236040

[2] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson

Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler Error Mes-

sages?. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE. https://doi.org/10.1109/icse.2017.59

[3] Brett A. Becker. 2016. An Effective Approach to Enhancing Compiler Error Mes-

sages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education (Memphis, Tennessee, USA) (SIGCSE ’16). Association for Comput-

ing Machinery, New York, NY, USA, 126–131. https://doi.org/10.1145/2839509.

2844584

[4] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-

vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-

Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-

sages Considered Unhelpful: The Landscape of Text-Based Programming Error

Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY, USA, 177–210.

https://doi.org/10.1145/3344429.3372508

[5] Brett A. Becker, CormacMurray, Tianyi Tao, Changheng Song, Robert McCartney,

and Kate Sanders. 2018. Fix the First, Ignore the Rest: Dealing with Multiple

Compiler Error Messages. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE ’18). Association for Computing Machinery,

New York, NY, USA, 634–639. https://doi.org/10.1145/3159450.3159453

[6] A. Dix, J. Finlay, G. D. Abowd, and R Beale. 2005. Human-Computer Interaction.
Prentice-Hall.

[7] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James

Prather, and Brett A. Becker. 2023. Using Large Language Models to Enhance

Programming Error Messages. In Proceedings of the 54th ACM Technical Sym-
posium on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE
2023). Association for Computing Machinery, New York, NY, USA, 563–569.

https://doi.org/10.1145/3545945.3569770

[8] DavinMcCall andMichael Kolling. 2014. Meaningful categorisation of novice pro-

grammer errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.
IEEE. https://doi.org/10.1109/fie.2014.7044420

[9] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. 2008. Com-

piler Error Messages: What Can Help Novices? SIGCSE Bull. 40, 1 (2008), 168–172.
https://doi.org/10.1145/1352322.1352192

[10] Raymond S. Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler

Error Messages Help Students? Results Inconclusive. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education (Seattle, Wash-

ington, USA) (SIGCSE ’17). Association for Computing Machinery, New York, NY,

USA, 465–470. https://doi.org/10.1145/3017680.3017768

[11] James L. Peugh. 2010. A practical guide to multilevel modeling. Journal of School
Psychology 48, 1 (2010), 85–112. https://doi.org/10.1016/j.jsp.2009.09.002

[12] James Prather, Paul Denny, Brett A. Becker, Robert Nix, Brent N. Reeves, Arisoa S.

Randrianasolo, and Garrett Powell. 2023. First Steps Towards Predicting the Read-

ability of Programming Error Messages. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE
2023). Association for Computing Machinery, New York, NY, USA, 549–555.

https://doi.org/10.1145/3545945.3569791

[13] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John

Homer, Nevan Simone, and Maxine Cohen. 2017. On Novices’ Interaction with

Compiler Error Messages: A Human Factors Approach. In Proceedings of the

246

https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1109/icse.2017.59
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3159450.3159453
https://doi.org/10.1145/3545945.3569770
https://doi.org/10.1109/fie.2014.7044420
https://doi.org/10.1145/1352322.1352192
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1016/j.jsp.2009.09.002
https://doi.org/10.1145/3545945.3569791


Building Blocks Towards More Effective SQL Error Messages ITiCSE 2024, July 8–10, 2024, Milan, Italy

2017 ACM Conference on International Computing Education Research (Tacoma,

Washington, USA) (ICER ’17). Association for Computing Machinery, New York,

NY, USA, 74–82. https://doi.org/10.1145/3105726.3106169

[14] Ben Shneiderman. 1982. Designing computer system messages. Commun. ACM
25, 9 (1982), 610–611. https://doi.org/10.1145/358628.358639

[15] Toni Taipalus. 2023. Query Execution Plans and Semantic Errors: Usability and

Educational Opportunities. In Extended Abstracts of the 2023 CHI Conference
on Human Factors in Computing Systems (Hamburg, Germany) (CHI EA ’23).
Association for Computing Machinery, New York, NY, USA, Article 239, 6 pages.

https://doi.org/10.1145/3544549.3585794

[16] Toni Taipalus. 2023. SQL: A Trojan Horse Hiding a Decathlon of Complexities.

In Proceedings of the 2nd International Workshop on Data Systems Education:
Bridging Education Practice with Education Research (Seattle, WA, USA) (DataEd
’23). Association for Computing Machinery, New York, NY, USA, 9–13. https:

//doi.org/10.1145/3596673.3603142

[17] Toni Taipalus and Hilkka Grahn. 2023. Framework for SQL Error Message

Design: A Data-Driven Approach. ACM Trans. Softw. Eng. Methodol. (2023).
https://doi.org/10.1145/3607180 Just Accepted.

[18] Toni Taipalus and Hilkka Grahn. 2023. NewSQL Database Management Sys-

tem Compiler Errors: Effectiveness and Usefulness. International Journal of

Human–Computer Interaction (2023), 1–12. https://doi.org/10.1080/10447318.

2022.2108648 arXiv:https://doi.org/10.1080/10447318.2022.2108648

[19] Toni Taipalus, Hilkka Grahn, and Hadi Ghanbari. 2021. Error messages in re-

lational database management systems: A comparison of effectiveness, useful-

ness, and user confidence. Journal of Systems and Software 181 (2021), 111034.
https://doi.org/10.1016/j.jss.2021.111034

[20] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and Complica-

tions in SQL Query Formulation. ACM Transactions on Computing Education 18,

3, Article 15 (2018), 29 pages. https://doi.org/10.1145/3231712

[21] Emillie Thiselton and Christoph Treude. 2019. Enhancing Python Compiler Error

Messages via Stack. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). 1–12. https://doi.org/10.1109/

ESEM.2019.8870155

[22] Heikki Topi, Kate M. Kaiser, Janice C. Sipior, Joseph S. Valacich, J. F. Nunamaker,

Jr., G. J. de Vreede, and Ryan Wright. 2010. Curriculum Guidelines for Undergrad-
uate Degree Programs in Information Systems. Technical Report. New York, NY,

USA. https://dl.acm.org/citation.cfm?id=2593310

[23] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and What

They Mean. Advances in Human-Computer Interaction (2010), 1–26. https:

//doi.org/10.1155/2010/602570

247

https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/358628.358639
https://doi.org/10.1145/3544549.3585794
https://doi.org/10.1145/3596673.3603142
https://doi.org/10.1145/3596673.3603142
https://doi.org/10.1145/3607180
https://doi.org/10.1080/10447318.2022.2108648
https://doi.org/10.1080/10447318.2022.2108648
https://arxiv.org/abs/https://doi.org/10.1080/10447318.2022.2108648
https://doi.org/10.1016/j.jss.2021.111034
https://doi.org/10.1145/3231712
https://doi.org/10.1109/ESEM.2019.8870155
https://doi.org/10.1109/ESEM.2019.8870155
https://dl.acm.org/citation.cfm?id=2593310
https://doi.org/10.1155/2010/602570
https://doi.org/10.1155/2010/602570

	Abstract
	1 Introduction
	2 Background
	2.1 System messages
	2.2 SQL error messages
	2.3 SQL error message guidelines

	3 Research setting
	3.1 Data collection instrument
	3.2 Participants
	3.3 Data collection
	3.4 Data preparation

	4 Results
	5 Discussion
	5.1 General discussion
	5.2 Implications guideline-by-guideline
	5.3 Practical implications
	5.4 Limitations and threats to validity

	6 Conclusion
	Acknowledgments
	References



