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Figure 1: An image of a Trojan horse, original generated with DALL-E with the prompt “a realistic painting of a Trojan horse at
the gates of Troy, with silhouettes of people in awe”

ABSTRACT

Despite its age, SQL is still a widely sought skill among software
developers and data engineers, which makes learning SQL a tempt-
ing prospect. Several online courses and tutorials may even inspire
learners by stating that SQL is a simple and easy language to learn.
This impression might also be strengthened by looking at simple
SQL statements that read close to English, in contrast to most pro-
gramming languages. In this paper, I will present ten complexities
hiding behind SQL’s initial appeal, and my experiences and pos-
sible solutions in mitigating these complexities in data systems
education.
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1 INTRODUCTION

SQL is a language required for many software development posi-
tions to complement programming skills [4]. The language itself
appears user-friendly: it is domain-specific, SQL statements look
almost English, and there seems to be little syntactical padding such
as different parentheses, brackets or, esoteric keywords. However,
inside the appealing plumage hides a powerful query language, and
more powerful languages have a tendency to also be more complex.

Becker [2] argues against the common convention of stating
that programming is difficult. I have said and written several times
that SQL is a difficult or challenging language to learn and use. In
retrospect, I have to admit that such statements, even when citing a
secondary source, were not based on systematic, empirical evidence
but rather on personal viewpoints in order to prepare students for
something that is expected to take time, or to motivate a scientific
study. Rather than arguing in this paper that SQL is particularly
difficult or particularly easy, I will instead present ten complexities
in SQL that might not be evident from the start of the learning
process.

I agree with an educator who might say that calling something
difficult is counter-productive. However, I also think it is important
to agree if something is going to be challenging (or difficult or
hard, etc.) to learn in order for the learner to assume a mindset
that learning this particular topic will take time and effort. While
agreeing with Becker’s arguments regarding the statement about
the difficulty of programming, I cannot promise to refrain from
saying that SQL is difficult in the future. I do believe that SQL has
made querying databases much simpler and easier than any other
way of querying, given the nature of relational database design to
cater to all possible queries instead of a chosen few. Without SQL,
querying databases might be more difficult, or, if querying would
be easier, some other aspects such as database design would be
more difficult.
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In this paper, I consider SQL to be the language the SQL Standard
[9, 10] defines, but in practice, it is difficult to consider SQL sepa-
rately from both the underlying principles such as the relational
model, as well as from the practical implementations which are the
dialects offered by various DBMSs. Consequently, I discuss the com-
plexities of SQL, but in addition to discussing the properties of the
language itself, the discussion inevitably bleeds to the underlying
principles and practical implementations.

This paper is not a critique of SQL, but an opposing point to
the notion that SQL is a particularly easy language to learn, with
the key takeaway that SQL, like many other computer languages,
has many intricacies that are not inherently obvious if one simply
considers simple tasks. These complexities are the aspects that make
SQL as difficult as it is, but the reader can personally decide how
difficult difficult is in this case. Perhaps the old adage “easy to learn,
difficult to master” applies to SQL as well. In the next sections, the
ten complexities are divided under the underlying principles behind
SQL, the language itself, and the implementations of the language
and the environments in which SQL statements are executed.

2 THE UNDERLYING PRINCIPLES
2.1 The role of relational theory

At first glance, relational theory appears intuitive and straightfor-
ward, as we are likely already familiar with representing data in a
tabular format. However, upon closer inspection, relational theory
can become challenging due to the various concepts involved, such
as candidate keys, superkeys, functional dependencies and axioms,
and normal forms. What makes it even more challenging is that,
although the concepts of relational theory are strictly defined, they
are not always followed in practice. As Date [8, p.204ff] points out,
relational theory does not require the use of primary keys, yet they
are typically defined in tables. Furthermore, as Codd [5] defined
that for a relation to be a relation, it must adhere to first normal
form, but even the SQL Standard describes non-first normal form
data structures such as JSON columns.

It is unclear how a target normal form is selected in industry
settings, and with only a few exceptions [1], it is unclear what
the effects of database normalization on dataset sizes, occurring
anomalies, and query execution performance are in practice. In
fact, in environments such as data warehouses, it is not uncommon
to sacrifice data redundancy minimization for performance gains.
From a learner’s perspective, this might seem counter-intuitive or
discouraging after familiarizing oneself with complicated relational
principles, only to discover that they are not always followed in
practice. As educators, we are providing students with formal tools
that can be difficult to use, but even more challenging is knowing
when to use them.

How to mitigate: I teach formal relational theory and data-
base design only after SQL. This way, SQL is just querying data
structures such as tables and columns, which are in my opinion,
mostly intuitive without prior knowledge of relational theory. In
this setting, my table structures always adhere strictly to at least
third normal form, and students do not define the tables themselves,
only query and modify data. I can also see the appeal of teaching
formal relational theory first, but I have come to see that this order
introduces fewer complexities.
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2.2 Data demand agnosticism

Closely related to the previous complexity, it may be easy to lull
oneself into a sense of security that if one follows relational theory
in the logical design of one’s database, the database will be able
to answer any data demand the business domain requires. And
this is almost always true. In contrast, many NoSQL data models
follow an opposing principle, according to which the database is
not designed to accommodate all possible data demands, but rather
only the specific ones required by the business domain.

Aside from other considerations arising from this difference,
it is easy to see which approach makes answering complex data
demands easier and which makes it more difficult, particularly
from a query writing perspective. Writing SQL can be challenging
because the underlying database was not designed to fulfill your
specific query, but rather all possible queries. Although a general-
purpose approach has its advantages, querying relational databases
inherently requires a more powerful query language. Therefore,
it follows intuitively that a powerful query language has more
complexities than a query language that relies on a specific database
structure to satisfy data demands.

How to mitigate: I have not found a way to mitigate this com-
plexity. In data warehouses, one can define aggregated tables to
make querying easier (and computationally faster), but someone
needs to write the complex queries that create these new data struc-
tures in the first place. It has also been shown that databases in low
normal forms make querying less error-prone [3], but from a peda-
gogical perspective, teaching querying using only such databases
introduces more complexities than it solves.

2.3 Sets and operations

Set theory in relational databases can be described in layperson’s
terms and does not necessarily require prior mathematical knowl-
edge. The operations on sets described in Codd’s [5] application
of relational algebra on query languages is, for the most part, intu-
itive for a layperson as well. One does not necessarily even need to
grasp that this is a branch of mathematics, as it is intuitive to, e.g.,
point out the common items in basket A: (apple, orange, lemon) and
basket B: (orange, lemon), or point out the baskets which do not
contain any apples. The difficulty arises when one considers the
intersection of several sets, each with a seemingly inconceivable
number of items.

For a more experienced writer, joining sets (i.e., contents of
columns of different tables) becomes almost mechanical, without
the need to think about the items themselves. That is, with n sets,
one typically needs n - 1 intersections (i.e., joins). If n is, say, 10, one
does not even begin to try to put the 9 intersections into natural
language. That is, writing is not about verbalizing the logic in a data
demand as much as it is about mechanically writing the query. With
the data demand agnostic database structures, queries can become
complex, and although the principles behind sets and operations
are relatively easy, they are sometimes applied in complex contexts.
Scholars like Danaparamita and Gatterbauer [6], Miedema and
Fletcher [14] and myself [21] have proposed visualizing complex
queries. Many of these propositions rely (sometimes implicitly) on
graph theory representations of tables (vertices) and joins (edges).
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How to mitigate: I utilize a query planning notation [21] to
support query writing. I do not teach the notation but rather explain
it as I draw. I sometimes only give a query plan and ask students to
explain the data demand behind it. It is also a quick way to compare
different queries and the logical differences between them without
focusing on syntactical nuances.

3 THE LANGUAGE

3.1 Imperative or declarative

The language can be charming to novices due to its simplicity.
The first SQL statements presented read deceptively close to plain
English. Instead of defining a loop as in programming, one quite
straightforwardly writes “give me the names of products that cost
more than 50 euros”. However, this uniformity between SQL and
natural language usually starts to wane when table joins are needed.

In a typical scenario, one selects the columns in the SELECT clause
using table aliases, which are rather counter-intuitively defined in
the following FROM clause. If tables are joined using subqueries, it
might be easier to understand the query by reading inside the inner-
most parentheses first, which are typically located in the last lines
of the query. Furthermore, if derived tables (i.e., subqueries in the
FROM or SELECT clauses) or common table expressions are used, the
query can no longer be read as a natural language statement in the
sense that text is read from start to finish. Instead, one might need
to perform somewhat complex acrobatics, jumping between differ-
ent parts of the query to understand how it works. The difficulty
here is not necessarily the jumping but how imperative elements
are incorporated into a declarative language after a threshold of
query complexity is reached.

My argument here is not that complex data demands should be
expressed as simple SQL statements, but that the seemingly gentle
learning curve takes a relatively steep turn. In imperative languages,
complex problems are typically divided into smaller ones, but in
declarative languages, this division is often more challenging and
takes away from the declarative nature of the language.

How to mitigate: I refrain from trying to treat SQL like a natural
language. This approach might not help with the complexity of
reading queries, but perhaps it manages expectations.

3.2 A myriad of choices

The SQL Standard gives a myriad of choices for formulating queries.
Table joins can be achieved (i) with subqueries formulated with
EXISTS or IN, with an equals or non-equijoin operator with or
without the keywords ANY, SOME or ALL, (ii) with an explicit join
condition in the WHERE clause without using any other join-related
keywords, or (iii) with the dedicated JOIN structure and all its
variations such as LEFT/RIGHT/FULL OUTER, NATURAL or CROSS.
While it is nice to have options, and while many of the table
join methods are interchangeable in many cases, it requires care
to recognize the situations in which they are not. A result table
containing columns from multiple tables typically requires that sub-
queries are not used in joining the tables from which the columns
in the result table are selected. If one does not want to use a com-
mon table expression, a subquery (rather than JOIN) is typically
the way to compare the results output by an aggregate function. A
subquery formulated with EXISTS operates with two-valued logic
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while a subquery formulated with IN uses three-valued logic. A
positive side is that while, for example, relational division using
multiple NOT EXISTS subqueries has been observed to be “intellec-
tually challenging” [13] and an “overwhelming challenge” [12] for
students, division can be written with more readable constructs
such as ALL or with GROUP BY and HAVING [12]. There are also other
alternatives such as NOT EXISTS paired with EXCEPT.

How to mitigate: I (sometimes falsely) abstract to create rules
of thumb on when to use which query concepts. In basic-level
courses, I leave out many query concepts such as derived tables and
LIMIT/OFFSET.Ialso leave out SQL keywords such as INTERSECTION,
CROSS JOIN and FULL OUTER JOIN which are in my experience
rarely used.

3.3 Strange conventions

SQL has some syntactical conventions that may seem strange at
first. Even after becoming accustomed to these conventions, they
can still be challenging to work with in query writing.

For example, a learner quickly discovers that aggregate functions
are not allowed in the WHERE clause. Such a syntactical feature typi-
cally introduces the need for a subquery which is evaluated against
a column value or a constant in the query above the subquery. This
feature can also introduce the need for a self-join, which may be a
difficult concept to understand. Although queries with such con-
structs are longer, they are not necessarily as difficult to read as
they are to write.

Another example is that the SQL Standard defines two ways
to implement GROUP BY. These ways do not seem to have offi-
cial names, but I will call them strict (which is a core feature in
the Standard) and non-strict (which is an optional feature). To my
understanding, the strict GROUP BY dictates that all the grouping
columns in the SELECT clause must appear in the GROUP BY clause
and vice versa. The non-strict GROUP BY dictates that all the group-
ing columns in the SELECT clause must appear in the GROUP BY
clause, or be functionally dependent on at least one column in the
GROUP BY clause. Some DBMSs implement both ways, while others
implement only one.

The challenge related to query writing with strict grouping is
redundancy. If the grouping columns in the SELECT clause must
be identical to the columns in the GROUP BY clause, it is a strange
syntactical convention to require the GROUP BY clause at all. On
the other hand, the challenge related to non-strict grouping is that
most DBMSs are not concerned with functional dependencies. If
a table has many candidate keys or violates (perhaps by design)
the third normal form, primary keys are not enough to enforce
functional dependencies. Consequently, most (if not all) DBMSs
that implement non-strict grouping allow grouping on whichever
columns, which can lead to spurious rows in result tables. Some
DBMSs such as Oracle Database and PostgreSQL keep metadata
on functional dependencies but only implement strict grouping.
As the existence or absence of functional dependencies is in these
cases dictated by database data rather than business logic, a DBMS
that hypothetically used non-strict grouping with functional de-
pendencies based only on automatically collected metadata would
risk the situation in which adding or modifying data would render
one or several SELECT statements syntactically incorrect.
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How to mitigate: I teach only strict grouping and try to choose
a DBMS that implements only strict grouping.

3.4 Three-valued logic

In terms of logic, two worlds collide in SQL. Date and Rubinson’s
insightful discussions [7, 18] on SQL’s logic seem to agree that
“three-valued logic is incompatible with database management sys-
tems”. On one hand, SQL operates using three-valued logic, and
learners may be taught what this means in terms of truth tables. On
the other hand, three-valued logic is seldom useful in the context
of relational databases, and often only adds to how challenging
SQL is to learn and use. That is, even though in theory SQL follows
three-valued logic, many SQL concepts operate using two-valued
logic, and the looming presence of three-valued logic can cause
unexpected behavior.

From three-valued logic it follows that NULL is NULL, that NOT
NULL is NULL, or that the expression on column ¢ = NULL is also
NULL. However, it is often desired that missing values are translated
into something else than unknowns (or whatever NULL stands for
in different cases). For example, the SQL keyword IS and functions
such as COALESCE and NULLIF translate the presence or absence of
unknowns into TRUE or FALSE. The presence of IS arguably adds
to the complexity of needing to remember the keyword instead of
using common comparison operators to check for the presence of
unknowns. Instead of returning NULL for all queries where at least
one calculated value is unknown, SQL’s aggregate function SUM
treats NULL like a zero instead of an unknown value. EXISTS oper-
ates using two-valued logic, and a correlated subquery with EXISTS
results in either TRUE or FALSE per row regardless of whether there
are unknown values present in the joined columns. This discrep-
ancy between what is logically correct under a set of rules, and
which rules we need in practice is challenging.

How to mitigate: I merely mention three-valued logic, but
otherwise act as if SQL operates on two-valued logic.

4 THE ENVIRONMENTS
4.1 Dialects

After discovering discrepancies between theoretical foundations
and the SQL Standard, the final impedance mismatch (before the
application code) occurs between the SQL Standard and the var-
ious implementations of the SQL language in relational DBMSs.
Different DBMSs such as SQL Server, MariaDB, and PostgreSQL
implement their own dialects of SQL.

Different dialects may implement different parts of the SQL
Standard, features contrary to the SQL Standard, and features not
defined in the SQL Standard. The differences between dialects are
sometimes effectively non-existent or minor to the point that one
can forget that the practical implementations are indeed dialects.
However, in some cases, these differences add to the complexity of
learning and using SQL.

The differences in grouping behavior, as discussed in Section 3.3,
are one of the bigger differences, along with the naming, functional-
ity, and availability of scalar functions. Time manipulation is often
complex, and changing from one DBMS to another may mean that
none of the familiar functions or keywords (e.g., OVERLAPS as de-
fined in the Standard) are available in the new DBMS. The syntax
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for modifying table structures is usually different in each dialect.
Some differences may even fundamentally affect how the logical
structures of databases are designed, as Oracle Database does not
implement CASCADE in foreign keys.

How to mitigate: I teach only one dialect per course, yet men-
tion that all queries are not portable from one DBMS to another. I
try to choose a dialect that is to my knowledge close to the SQL
Standard’s definition to maximize compatibility. I can also see the
value in Randolph’s [17] way of teaching several dialects, yet in my
opinion, teaching several dialects adds unnecessary complexity to
learning the language itself. Switching between dialects can come
after learning the basics of SQL.

4.2 Error messages

Many popular DBMSs have been around for decades, and their
usability has often been neglected, especially when it comes to SQL
compilers. Especially for learners, any compiler is generally seen
as an unwavering, unerring authority [24]. However, when a query
writer commits a syntax error in query formulation, they are faced
with error messages that can be redundant, inaccurate, or difficult
to read [23].

We recently conducted a mixed-method study (forthcoming) on
the qualities of syntax error messages of eight relational DBMSs.
While some systems provide clear and helpful error messages, oth-
ers overwhelm users with irrelevant information or fail to communi-
cate the actual problem. Without naming any culprits, some DBMSs
state multiple times in the same error message that the query con-
tains an error, some replicate parts of the erroneous query but not
the erroneous part, some begin the error message by stating seem-
ingly incomprehensible environmental variables, and some simply
usually instruct to read the manual.

Furthermore, and closely related to the previous complexity of
dialects, different DBMSs check SQL syntax differently, meaning
that what is a syntax error according to one DBMS may not be
a syntax error according to another. Overall, error messages are
crucial for fixing queries, but they could be more effective if they
simply pointed out even the approximate location of the error. I
expect the rising popularity of large language models to tackle
much of the current grievances in SQL error messages in DBMSs.
Similar works in SQL education [16], natural language processing
[11] and hybrid query processing [19] have already appeared.

How to mitigate: I strive to teach with a DBMS that has user-
friendly error messages. This, naturally, cannot be the only aspect
that matters, and there are often other considerations such as tech-
nical constraints and costs. Nevertheless, students need, if not a
friendly, at least a non-hostile environment in which to try out
erroneous queries.

4.3 Lack of error messages

In addition to syntax errors, many DBMSs identify semantic errors.
A typical query with a semantic error will always return an empty
result table, regardless of what is stored in the database, and the
fact that the query will return an empty result table is evident by
reading the query rather than executing it. Most likely for query
optimization reasons, many DBMSs identify such queries and return
an empty result table without even evaluating expressions such as
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WHERE age > 20 AND age < 20; against the database. There are
also other similar “always incorrect” query constructs which are
often identified by the DBMS [22].

The complexity here is that DBMSs do not notify the user of such
errors. Instead, these valuable pieces of information are hidden in
query execution plans, and they must be explicitly requested. If a
novice user is even aware of the existence of query execution plans,
manually requesting one after each syntactically valid query is ar-
guably an arduous task even though doing so could reveal semantic
errors in the query. Additionally, reading query execution plans
is not a trivial task for the uninitiated, and query execution plans
and physical database operations can vary significantly between
DBMSs.

How to mitigate: In basic-level courses I have begun to utilize
relatively simple database structures with relatively simple, hetero-
geneous datasets [15] which help students in manually checking the
data to understand why a queries return the datasets they return. I
also show correct result tables for each exercise, so that students
may check the correctness of their queries themselves, and iterate
if necessary.

5 CONCLUSION

In this paper, I presented ten complexities in learning and using
SQL, many of them stemming from the discrepancies between
the theoretical foundations, the SQL Standard, and the different
implementations of SQL. These complexities might not account for
too much on their own, but together they can cause a healthy dose
of dread to even the most experienced developer [20]. Based on
my personal experiences, I also presented ways to mitigate each
of these complexities in teaching SQL. Some of these mitigations
might even be called hacks in a negative sense, as they effectively
omit parts of knowledge that the learner will likely encounter later.
However, I believe that I am not alone in my view that in education,
some aspects of any topic should be omitted or abstracted when
learning the basics.
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