
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=hihc20

International Journal of Human–Computer Interaction

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/hihc20

NewSQL Database Management System Compiler
Errors: Effectiveness and Usefulness

Toni Taipalus & Hilkka Grahn

To cite this article: Toni Taipalus & Hilkka Grahn (2022): NewSQL Database Management
System Compiler Errors: Effectiveness and Usefulness, International Journal of Human–Computer
Interaction, DOI: 10.1080/10447318.2022.2108648

To link to this article: https://doi.org/10.1080/10447318.2022.2108648

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 15 Aug 2022.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=hihc20
https://www.tandfonline.com/loi/hihc20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10447318.2022.2108648
https://doi.org/10.1080/10447318.2022.2108648
https://www.tandfonline.com/action/authorSubmission?journalCode=hihc20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=hihc20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10447318.2022.2108648
https://www.tandfonline.com/doi/mlt/10.1080/10447318.2022.2108648
http://crossmark.crossref.org/dialog/?doi=10.1080/10447318.2022.2108648&domain=pdf&date_stamp=2022-08-15
http://crossmark.crossref.org/dialog/?doi=10.1080/10447318.2022.2108648&domain=pdf&date_stamp=2022-08-15

NewSQL Database Management System Compiler Errors:
Effectiveness and Usefulness

Toni Taipalus and Hilkka Grahn

University of Jyv€askyl€a, Jyv€askyl€a, Finland

ABSTRACT
Modern database management is often faced with a high number of concurrent end-users, and
the need for database distribution to ensure fault tolerance and high throughput. To flexibly
address these challenges, many modern database management systems (DBMS) provide highly
automated and effortless, i.e., highly usable database distribution, deployment, and maintenance.
However, the usability considerations are yet to extend from the aforementioned DBMS features
to query language compilers. In this study, based on participant answers (N¼ 157), we compare
the error message qualities of four modern DBMSs (CockroachDB, SingleStore, NuoDB, and VoltDB)
using one objective and three subjective metrics. Our results show that some of the DBMSs pro-
vide the users with more useful error messages, even though many of these error messages vio-
late even the most basic usability guidelines. These results (i) are applicable in further developing
the usability aspects of query language compilers, (ii) provide a timely effort of bridging the gap
between human-computer interaction and query language compilers, and (iii) offer suggestions
on teaching novices, who require emphasized support in query formulation.

1. Introduction

Error messages are crucial for fixing errors in queries, yet
errors are difficult to fix because of error messages’ poor
usability (Traver, 2010). Several decades ago, scholars have
pointed out that especially novice users feel “confused, dis-
mayed, and discouraged from continuing” when encountering
confusing or even aggressive system messages (Shneiderman,
1982). The usability aspects of compilers and error messages
have received ample scientific attention (Becker et al., 2019),
but this attention has not been extended from programming
languages to query languages. As the query language is an
integral part of the process of retrieving data from a database,
it is crucial that the query is written without errors.
Furthermore, information retrieval from databases is an
important topic in human-computer interaction (HCI)
research. The increasingly emphasized role of data in informa-
tion systems has led to the emergence of nascent subfields,
such as human–data interaction (Victorelli et al., 2020).

At the same time, the importance of data is increasingly
highlighted in rapidly growing fields, such as data mining
and machine learning. Additionally, the rise of the highly
competitive market of web and mobile applications has pres-
sured technical data management solutions to meet demands
for the high number of concurrent users, high volume and
velocity of data, as well as high reliability (Ramakrishnan,
2012). Consequently, a large portion of data management
has moved to cloud environments, which enable rapid

prototyping, cost–efficiency, and automated resource alloca-
tion on demand (Buyya et al., 2019). Furthermore, the infor-
mation technology field and related skills are becoming
more and more common, and basic software development is
introduced earlier and earlier as well as more and more
broadly into various curricula (L�edeczi et al., 2021; Szabo
et al., 2019). As the ubiquitousness of the information tech-
nology field is increasing, expert systems, such as DBMSs
need to be accessible for novices as well as experts (Nicolaos
& Katerina, 2015; Sobiesiak et al., 2002). As such, many ven-
dors behind modern, distributed database management sys-
tems (DBMS) have made DBMS deployment and database
distribution flexible, automated, and effortless for software
developers (Hacigumus et al., 2002).

Given these considerations, it remains unclear whether
usability extends from features, such as automated and flex-
ible database distribution to other aspects of DBMSs. To
this end, we set out to compare NewSQL database manage-
ment systems from a scientifically neglected point of view of
query language compiler usability. Specifically, we compare
16 retrieval query syntax error messages of CockroachDB,
SingleStore, NuoDB, and VoltDB using error fixing success
rate, error recovery confidence, and perceived usefulness of
the error message for finding and fixing the error as per-
formance metrics. Our results reveal modern DBMSs with
many compiler errors designed against 40 year old HCI best
practices, as well as statistically significant differences in

CONTACT Toni Taipalus toni.taipalus@jyu.fi University of Jyv€askyl€a, Jyv€askyl€a, Finland
� 2022 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION
https://doi.org/10.1080/10447318.2022.2108648

http://crossmark.crossref.org/dialog/?doi=10.1080/10447318.2022.2108648&domain=pdf&date_stamp=2022-08-13
http://orcid.org/0000-0003-4060-3431
http://orcid.org/0000-0001-7567-7807
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/10447318.2022.2108648
http://www.tandfonline.com

error message usefulness between these four modern DBMS
compiler errors.

The rest of this study is structured as follows. In the next
section, we discuss the theoretical background and prior
studies on data management, usability, and query languages.
In Section 3 we describe our research setting and data col-
lection, and state our hypotheses. In Section 4 we present
our results from statistical analyses and in Section 5 the
implications of our research, and some recommendations
for the DBMS industry. Section 6 concludes our study.

2. Theoretical background

2.1. Data management in the cloud

Cloud computing is a growing technology model built around
providing a high-level abstraction of distributed computing,
usually offered as a subscription-based service to the end-user
(Abbasi et al., 2019; Buyya et al., 2019). Effectively, the end-
user pays for resources they utilize (e.g., storage space, com-
putation, and network bandwidth), rather than investing in
hardware, software and infrastructure outright. Consequently,
some of the reasons for the popularity of the cloud computing
model are the speed of deployment, scalability of computing
resources, and cost-efficiency (Buyya et al., 2019). Depending
on the cloud service provider, different service models are
offered. These service models typically dictate which parts of
the system are provided and maintained by the service pro-
vider, and which parts by the end-user. For example, the ser-
vice provider may merely provide the infrastructure and
(often virtual) hardware, the aforementioned complemented
by an operating system, or all the aforementioned comple-
mented by a database management system (Somu et al.,
2017). Depending on their requirements, the end-user may
choose a high level of abstraction while discarding control
over low-level configurations. In contrast, by choosing a low
level of abstraction, the end-user retains control—and respon-
sibility—of low-level tasks, such as maintaining the operat-
ing system.

The role of the relational data model, SQL, and trad-
itional relational DBMSs (RDBMS), such as Oracle
Database, IBM DB/2, and Microsoft SQL Server has been
challenged in the 2000s by new data models and query lan-
guages of numerous NoSQL data stores (Grolinger et al.,
2013). While RDBMSs have favored data consistency at the
cost of availability and transaction performance (Chaudhry
& Yousaf, 2020; Pavlo & Aslett, 2016), many NoSQL data
stores have been designed the other way around to serve,
e.g., web applications with requirements for low response
time and a high number of concurrent end-users
(Ramakrishnan, 2012). In the 2010s, however, the industry
leaders, such as Google deemed transaction support, data
consistency, and the SQL language important enough to
design a new DBMS to incorporate features from both trad-
itional RDBMSs and NoSQL data stores (Corbett et al.,
2013). In general, modern (i.e., in this case initially released
after 2010) online transaction processing DBMSs that use
the relational model, SQL, and distributed architecture are
called NewSQL DBMSs. A recent study (Pavlo & Aslett,

2016) further defines NewSQL DBMSs as systems built from
the ground up, rather than extensions or modifications of
existing systems. The study concludes that while NewSQL
systems do not offer new features or innovations per se,
they skillfully integrate tested techniques into single systems.
That is, “NewSQL database systems are not a radical depart-
ure from existing system architectures but rather represent the
next chapter in the continuous development of database tech-
nologies” (Pavlo & Aslett, 2016, p. 53). When choosing a set
of NewSQL DBMSs for this study, we adopt the definition
of NewSQL systems provided above (Pavlo & Aslett, 2016).

The distributed architectures of NoSQL and NewSQL
systems are a natural fit for cloud environments
(Grolinger et al., 2013). While traditional RDBMSs also
support database distribution and are offered by cloud
service providers, some studies consider traditional
RDBMS distribution difficult for various reasons (Pavlo &
Aslett, 2016; Stonebraker, 2010). In practice, the new dis-
tribution implementations provide automatic distribution
of data, automated data balancing between the distributed
nodes, and with heterogeneous distribution models, auto-
mated primary/secondary elections during faults or other
topology modifications.

2.2. Query language usability

According to the ergonomics of human-system interaction
standard, “Usability is relevant to regular ongoing use, to
enable users to achieve their goals effectively, efficiently and
with satisfaction; learning, to enable new users to be become
effective, efficient and satisfied when starting to use a system,
product or service” (ISO, 2018).

Usability is a recurring theme in the evolution of cloud
data management, and one of the main reasons behind
new database distribution implementations was rooted in
usability considerations (Shi et al., 2010; Stonebraker,
2010). First, arguably, in addition to performance and flex-
ible scalability, the need for dynamic database schemas is
one of the defining characteristics of many NoSQL data
models. Dynamic schemas absolve the software developer
from defining a strict database structure. Second, the need
to return to strong transactional capabilities with NewSQL
systems can be seen as a need to abstract the implementa-
tion of database transactions from the software developer
to the DBMS. Finally, the abstraction of computer infra-
structure, hardware, and partial software through cloud
services all serve the demand for usability through cost-
efficiency, flexibility, and rapid prototyping. On logical
grounds, it seems interesting whether the demands for
usability are also considered in other aspects of cloud data-
base management systems, e.g., in compiler error messages,
as usability, in general, has been argued to facilitate cost-
efficiency through, e.g., improved productivity, reduced
training, and documentation costs, lower support costs,
and competitive edge (Donahue, 2001).

Data management solutions in cloud environments utilize
several query languages and data models. Traditional RDBMSs
and NewSQL systems utilize an implementation of SQL, while

2 T. TAIPALUS AND H. GRAHN

NoSQL systems each usually have a distinct query language,
e.g., Neo4j’s Cypher (Francis et al., 2018), or Cassandra’s SQL-
based CQL (Wang & Tang, 2012). These proprietary query lan-
guages are sometimes complemented by SQL. As these NoSQL
languages are designed for different data models and have dif-
ferent levels of expressiveness, usability comparison of different
query languages is arguably problematic. Further, as some trad-
itional RDBMSs offer implementations dating across four or
five decades, we deemed it more interesting to focus on the
usability of systems developed from the ground up in the last
decade. As a contrasting example, Oracle Database 8i documen-
tation from 1998 listed the same SQL error messages as Oracle
Database 21c from 2021 (Oracle Corporation, 2021).

SQL is a language initially designed for data retrieval.
However, in the decades following the initial release of the
SQL standard, the language has evolved to encompass data
manipulation, database structure definition, access control,
and transaction management (Chamberlin, 2012). Data
retrieval remains the most studied aspect of SQL (Taipalus
& Sepp€anen, 2020), and because of this more established
research background, this study focuses solely on
data retrieval.

Possibly due to the increasingly ubiquitous nature of data,
and the rising popularity of data analytics and data science,
query languages, SQL in particular, have received increasing
scholarly attention (Taipalus & Sepp€anen, 2020). Current
educational research seems rather unanimous with the view
that learning SQL is difficult (Miedema et al., 2021; Shin,
2020; Taipalus & Per€al€a, 2019). Usability concerns in query
formulation have been explained by human factors, such as
cognitive load (Shin, 2020; Smelcer, 1995), data model and
real-world mismatch (Borthick et al., 2001; Sutcliffe et al.,
2000), and different user characteristics (Ashkanasy et al.,
2007; Bak & Meyer, 2011). Additionally, it has been shown
that different environmental aspects, such as database com-
plexity (Taipalus, 2020a) and database representation (Shin,
2020; Siau et al., 2004) have an effect on query writing.
Finally, different measures for engaging and helping the end-
user have been proposed in scientific literature, e.g., query
visualization and previews (Taipalus, 2019; Tanin et al.,
2000), cosmetic alterations (Dong & Khandwala, 2019), dif-
ferent natural language interfaces (Ribeiro & Moreira, 2003),
and the facilitation of query reuse (Allen & Parsons, 2010;
Toorn et al., 2022). However, error message research has not
extended from programming languages to query languages,
and the latest studies on the effects of SQL compiler error
messages on query formulation seem to be published in the
1980s (Reisner, 1981; Welty & Stemple, 1981), until a recent
comparison of SQL compilers of traditional RDBMS in 2021
(Taipalus et al., 2021). The differences in the SQL standard
(ISO/IEC, 2016a, 2016b) between the 1980s and 2020s, as
well as differences between SQL and imperative program-
ming languages, and the potential threats to the generaliz-
ability of scientific results induced thereof have been
highlighted in a previous study (Taipalus & Sepp€anen, 2020).
Regarding usability, due to its declarative nature, SQL is
arguably a “blacker box” to a software developer than an
imperative programming language.

2.3. Error messages and error recovery

A large number of studies have shown the importance of com-
piler error messages for learning, and for software development
in general in the context of programming languages (Becker
et al., 2016, 2019; Wrenn & Krishnamurthi, 2017). The same
studies have also argued that current compiler error messages
are ineffective due to several reasons. From the perspective of
error messages, DBMSs have a query parser that checks the
syntax of the query and outputs an error message if necessary
(Hellerstein et al., 2007). In the scope of this study, the query
parser is the component that separates the usability aspects of
different DBMSs from each other. Additionally, some DBMSs,
such as MySQL allows pluggable storage engines that can be
switched with relative ease. The storage engine typically con-
tains the query parser, and thus the storage engine is often
responsible for generating the SQL error messages. It is worth
noting that while SingleStore is a NewSQL system, it utilizes
the InnoDB storage engine also utilized by MySQL.

When an end-user, e.g., a software developer, writes an erro-
neous query and submits it to a DBMS, the DBMS outputs an
error message. This is often referred to as error detection (van
der Schaaf, 1995; Zapf & Reason, 1994). Next, the end–user
tries to interpret the error message and find the erroneous part
of the query. This phase is called explaining. Finally, the end-
user attempts to fix the error, typically based on the feedback
provided by the error message. This process of three phases is
called error recovery (van der Schaaf, 1995; Zapf & Reason,
1994), and serves as a theoretical foundation for our chosen
subjective metrics, i.e., error recovery confidence, and error mes-
sage usefulness for finding and fixing the error.

A seminal study published in 1982 suggests that computer
error messages should be “brief, positive, constructive, specific,
comprehensible” (Shneiderman, 1982, p. 611), positive referring
to refraining from using words, such as “illegal, invalid, error”
in the error message, and constructive referring to hints or sug-
gestions on the causes of the error and how to fix it.
Considering that the WHERE clause is one of the most common
SQL clauses, Figure 1 shows an SQL query with a simple typo-
graphical error in the keyword WHERE, and seven correspond-
ing error messages from traditional RDBMSs and NewSQL
systems. As software developers, especially novices, often con-
sider the compiler the first authority in determining the quality
of written software, the error messages in Figure 1 succeed in
neither communicating why the query is erroneous nor adher-
ing to all the suggestions presented 40 years ago.

3. Research setting

3.1. Study scope

In the previous section, we discussed the importance of
effective error messages in the context of programming lan-
guages, and that prior works have attempted to explain and
enhance said error messages to facilitate more effective soft-
ware development. We also argued for the usability concern,
which seems to be one of the driving factors behind the
popularity of cloud environments and more effortless data-
base distribution. However, in light of previous scientific

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 3

literature, and a preliminary inspection of DBMS error mes-
sages (Figure 1), it seems that even SQL compilers of modern
DBMSs do not necessarily account for usability concerns or
error message design guidelines and that the topic has not
received much scientific attention in recent decades.

As explained in Section 2, we deemed comparing DBMSs
utilizing SQL with DBMSs utilizing some other query lan-
guage difficult for internal validity. On the other hand, a
recent study (Taipalus et al., 2021) compared SQL compiler
usability of traditional RDBMS. For these reasons, in this
study, we chose to focus on NewSQL systems using the SQL
compiler usability framework reported in a previous study
(Taipalus et al., 2021). We deemed it more interesting to
focus on popular NewSQL systems, even though measuring
popularity is rather difficult. Based on three NewSQL studies
(Kaur & Sachdeva, 2017; Pavlo & Aslett, 2016; Schreiner
et al., 2019), we identified four popular NewSQL database
management systems for this study: CockroachDB (v19.2.2),
SingleStore (7.0.10, previously known as MemSQL), NuoDB
(build 4.0.4-2), and VoltDB (Community 9.2.2). All these
systems implement relational or semi-relational data models,

use SQL as their query language, and are built from the
ground up in the 2010s (Grolinger et al., 2013).
Additionally, DB-Engines1 ranks these four DBMSs high in
popularity among NewSQL systems, when NewSQL systems
are defined as in Section 2.1. In regard to different types of
errors, we focus on syntax errors, and based on a previously
reported framework (Taipalus et al., 2018), we focus on the
16 most common syntax errors in SQL queries. These previ-
ously reported syntax errors and our corresponding tests are
reported in Table 1. These tests and queries within are in
turn based on those reported in a previous study (Taipalus
et al., 2021), but adjusted to account for the chosen four
NewSQL systems. In the next subsections, we detail the data
collection, hypotheses, and analyses, which are summarized
in Figure 2.

3.2. Data collection

To focus on the differences in the selected DBMS usability
in fixing erroneous queries, we chose not to use database
experts as participants. We speculated that experts might

SELECT name , price_usd , brand , model
FROM product
WHRE (brand LIKE S% OR brand LIKE

C%)
AND picture IS NULL
ORDER BY name DESC;

(a) Query with a typographical error (WHRE
instead of WHERE)

Msg 321, Level 15, State 1, Server
q7410 , Line 4

"brand" is not a recognized table hints
option.

(b) SQL Server error message

ERROR : syntax error at or near "LIKE"
LINE 3: WHRE (brand LIKE S% OR brand

LIKE C%)
ˆ

(c) PostgreSQL error message

ORA -00933: SQL command not properly
ended

(d) Oracle Database error message

invalid syntax: statement ignored: at
or near

"like": syntax error
DETAIL: source SQL:
SELECT name , price_usd , brand , model
FROM product
WHRE (brand LIKE S% OR brand LIKE

C%)
ˆ

HINT: try \h <SOURCE >

(e) CockroachDB error message

SQL error while compiling query: SQL
Syntax error in

"SELECT name , price_usd , brand , model
FROM product
WHRE (brand LIKE S% OR brand LIKE

C%)
AND picture IS NULL
ORDER BY name DESC;"
unexpected token: LIKE required:)

(f) VoltDB error message

ERROR 1064 ER_PARSE_ERROR: You have an
error in your SQL syntax; check the
manual that corresponds to your
MySQL server version for the right
syntax to use near

(brand LIKE S% OR brand LIKE C%)
AND picture IS NULL
ORDER BY name DE at line 3

(g) SingleStore (with InnoDB storage engine)
error message

Error 42000: syntax error on line 3
WHRE (brand LIKE S% OR brand LIKE C

%)
ˆ expected end of statement got

parenthesis

(h) NuoDB error message

Figure 1. Erroneous query with a simple typographical error (a), and seven corresponding error messages generated by seven different DBMSs; three traditional
RDBMSs (b–d), and four NewSQL DBMSs (e–h).

4 T. TAIPALUS AND H. GRAHN

have former experience on one or several of the DBMSs
studied and that their expertise would result in successful
error fixing regardless of the error message, thus skewing
the results toward a ceiling effect (i.e., results are not statis-
tically significantly different because tests were too easy for
selected participants). Furthermore, experts are arguably less
dependent on the error messages, and more able to fix erro-
neous queries regardless of the error message. Because we
wanted to specifically study the effects of different compiler
error messages, we recruited our study participants from a
database management course given at the authors’ univer-
sity. The participants majored in software engineering or
information systems science and had acquired basic SQL
knowledge from the course. The students were promised
extra course points for taking the survey. Taking the survey
was not mandatory, and if a student also chose to do so,
their answers were anonymized and used in this study.
Participating in the study was not required for extra course
points, and the students were shown a full privacy statement
before answering. Out of the 188 students who answered the
survey, 157 (84%) chose to participate in the study.

Next, a participant was randomly assigned to one of the
four database management system groups—i.e., CockroachDB
(n¼ 32), NuoDB (n¼ 44), SingleStore (n¼ 39), and VoltDB
(n¼ 44)—and shown a set of 20 tests, one test at the time.
The first four tests were control questions measuring partici-
pant skill in error fixing, and these four tests were the same
for all participants, regardless of the group the participant was
assigned to. Next, the test suite of 16 tests (cf. tests T01–T16
in Table 1) was shown, test by test, and in a randomized order
for each participant. Each of the 16 tests consisted of a

database structure diagram, a data demand, an erroneous SQL
query, an error message generated by the DBMS, a free text
input box in which the participant was instructed to write the
fixed query, and a set of five-point Likert scale (1¼ strongly
disagree, 5¼ strongly agree) questions pertaining to subjective
indicators of the usability qualities of the error message (cf.
hypotheses H2, H3 and H4 in the next section). Depending on
the group the participant was assigned to, they were shown
corresponding error messages, e.g., for participants assigned
to VoltDB group, VoltDB generated error messages were
shown. Answering could be paused or stopped altogether, yet
none of the participants chose to do so. The participants could
use any materials for support during the tests. For more
details on the tests, error messages, database structure, and
questions, please refer to the supplementary Appendices.
After all the participants had answered the tests, the first
author coded the queries submitted by the participants as cor-
rect or incorrect. A query that contained at least one syntax
error was considered incorrect.

3.3. Hypotheses

To study usability considerations of four NewSQL database
management systems, we formulated two sets of hypotheses.
Hypotheses H1–H4 compare objective query fixing success
rates, as well as subjective error recovery confidence, useful-
ness for error finding, and usefulness for error fixing with a
between-subjects study design. Hypotheses H5–H7 test cor-
relation of error message qualities regardless of the database
management system group. We chose to test the particular
correlations between the objectively measured variable (i.e.,
success rate) and the subjectively measured variables (i.e.,
perceived usefulness for finding and fixing the error, and
error recovery confidence) because of the nature of how
these variables were measured. In other words, we did not
test correlations between subjectively measured variables.

H1: the medians of query formulation success rates are dif-
ferent for the database management system groups.

H2: the medians of error recovery confidence are different
for the database management system groups.

H3: the medians of perceived usefulness for error finding
are different for the database management system groups.

H4: the medians of perceived usefulness for error fixing are
different for the database management system groups.

Recruit
participants

Assign
participants to
DBMS groups

Fix erroneous
control question

queries

Fix erroneous
queries, answer
Likert questions

Omit outliers
based on control

questions

Compare the
DBMS groups

(H1 - H4)

Check for
correlations

(H5 - H7)

Figure 2. Overview of the data collection and analysis process; white rectangles refer to actions performed by us and grey rectangles to actions performed by the
study participants.

Table 1. Test suite consists of 16 most common syntax errors (Taipalus
et al., 2018).

Test Syntax error name

T01 Ambiguous column
T02 Omitting quotes around character data
T03 IS where not applicable
T04 Confusing the syntax of keywords
T05 Confusing the logic of keywords
T06 Too many columns in subquery
T07 Undefined column
T08 Misspellings
T09 Failure to specify column name twice
T10 Using an aggregate function outside SELECT or HAVING
T11 Grouping error: extraneous grouping column
T12 Non-standard operators
T13 Using WHERE twice
T14 Non-standard keywords or standard keywords in wrong context
T15 Synonyms
T16 Curly, square, or unmatched brackets

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 5

https://doi.org/10.1080/10447318.2022.2108648

H5: q 6¼ 0; the correlation coefficient between query formu-
lation success rate and error recovery confidence is not
equal to zero.

H6: q 6¼ 0; the correlation coefficient between query formu-
lation success rate and perceived usefulness for finding the
error is not equal to zero.

H7: q 6¼ 0; the correlation coefficient between query formu-
lation success rate and perceived usefulness for fixing the
error is not equal to zero.

3.4. Data preparation and mitigation of
control variables

Due to random participant assignment, it is possible that par-
ticipants with higher (or lower) querying skills were assigned
to the same group. This assignment presents a threat to
internal validity, potentially skewing the results regardless of
the qualities of the dependent variable (i.e., the error mes-
sages). To mitigate the effect of imbalance in participant
assignment, we included four control questions in the survey.
Based on the control questions, we omitted outliers from fur-
ther between-subjects analyses based on query fixing success
rate in the control questions. After the outliers were removed,
and because the data were not normally distributed, we ran a
Kruskal-Wallis H test to determine if there were differences in
control question scores between the four groups of participants
using different database management systems: CockroadDB
(n¼ 25), NuoDB (n¼ 44), SingleStore (n¼ 28), and VoltDB
(n¼ 44). Distributions of control question scores were similar
for all groups, as assessed by visual inspection of a boxplot.
There were no significant differences in the medians of control
question scores between groups, H(3) ¼ 4.987, p ¼ .173.
Hence, we considered the groups equal in terms of query fixing
skills. For hypotheses H5–H7, which were not concerned with
between–subjects comparison, we analyzed all data (N¼ 157).

SingleStore SQL compiler tolerated syntax errors in tests
T09 and T11. The lack of an error message in these two
tests was compensated in the questionnaires by made up
error messages. The test results of tests T09 and T11 for
SingleStore were omitted from the statistical analyses.

4. Results

4.1. A summary of results

In the following sections, we present the analyses in more
detail, i.e., system per system, and describe the chosen

statistical tests. A significance level of a ¼ .05 was chosen for
all the statistical tests. A summary of results presented in
Table 2 shows that hypotheses H3–H7 were supported, and
hypotheses H1 and H2 were not supported. Please refer to
Figure 3 for an overlook of the DBMS comparison.

4.2. Database management system group differences

For each of the hypotheses H1, H2, H3, and H4, we ran a
Kruskal-Wallis H test to determine if there were differences
in error message effectiveness (measured in error fixing suc-
cess rates, H1), error recovery confidence (H2), and per-
ceived usefulness of the error message in terms of finding
(H3) and fixing (H4) the error between four groups of par-
ticipants with different database management systems:
CockroachDB (n¼ 25), SingleStore (n¼ 28), NuoDB
(n¼ 44), and VoltDB (n¼ 44). Distributions of the answers
for all hypotheses were similar for all groups, as assessed by
visual inspection of a boxplot. Subsequently, pairwise com-
parisons were performed using Dunn’s (1964) procedure
with a Bonferroni correction for multiple comparisons.
Adjusted p-values are presented in Table 3, and the results
are visualized in Figure 3.

4.3. Correlations

For each of the hypotheses H5, H6 and H7, we ran a rank
biserial correlation to assess the relationship between error
message effectiveness (measured in success rate, H5) and
error recovery confidence; between query formulation suc-
cess rate and perceived usefulness for finding the error (H6);
and between query formulation success rate and perceived
usefulness for fixing the error (H7) (N¼ 157). For all three
hypotheses, and for individual database management sys-
tems, the results were all statistically significant with a weak
positive correlation. The test statistics are presented in
Table 4.

5. Discussion

5.1. Implications for research

The results show no statistically significant differences in
error message effectiveness between the DBMSs (hypothesis
H1). Although this observation implies that none of the
DBMSs studied has more effective error messages than
another, it is worth noting that success rate may be consid-
ered as one metric for effectiveness, rather than the sole
metric. For example, in the context of programming

Table 2. Summary of results.

Hypothesis Short description Supported Test statistic Effect size

H1 Different effectiveness No H(3) ¼ 5.254, p ¼ .154
H2 Different recovery confidence No H(3) ¼ 0.157, p ¼ .984
H3 Different usefulness for error finding Yes H(3) ¼ 24.396, p < .001 g2 ¼ .174
H4 Different usefulness for error fixing Yes H(3) ¼ 9.870, p ¼ .020 g2 ¼ .071
H5 Effectiveness () recovery confidence Yes rrb(2486) ¼ .283, p < .001
H6 Effectiveness () error finding Yes rrb(2486) ¼ .238, p < .001
H7 Effectiveness () error fixing Yes rrb(2486) ¼ .215, p < .001

6 T. TAIPALUS AND H. GRAHN

language compiler error messages, it has been suggested that
the messages affect error recovery time rather than success
(Ahmed et al., 2019).

There were no statistically significant differences in error
recovery confidence between the DBMSs (hypothesis H2).
This suggests that error messages, although different, do not
necessarily affect novice confidence in error recovery.
Arguably, some error messages highlight the erroneous part
of the query, yet fail to identify why the query contains an
error, or may even provide false information on why the
query is erroneous (Figure 1). Based on the results, it

remains unclear why there were no significant differences in
error recovery confidence. Similarly, the results yielded by
this study support the notion that SQL error recovery confi-
dence may have a similar relationship with error message
effectiveness (hypothesis H5) as confidence more generally
has with success (Fleming et al., 2010; Martino et al., 2013).
A rather underwhelming result of a weak positive correl-
ation between success rate and error recovery confidence
may indicate that it might be unexpectedly common that
either a participant was confident in their fixed query, yet
the query was incorrect, or that a participant was unsure

Table 3. Test statistics for hypotheses H1–H4; post-hoc analyses were performed only if the Kruskal Wallis H test was statistically significant; DBMS names have
been abbreviated as (Si)ngleStore, (Co)ckroachDB, (Nu)oDB, and (Vo)ltDB.

Mdn Pairwise comparison (p-value)

Co Si Nu Vo Co-Si Co-Nu Co-Vo Si-Nu Si-Vo Nu-Vo

Effectiveness .875 .875 .813 .813
Recovery confidence 3.94 3.78 3.75 3.81
Error finding 4.13 3.56 4.16 3.68 .004 1 .023 <.001 1 .003
Error fixing 3.63 3.36 3.78 3.50 .256 1 .665 .048 1 .140

(a) Error message effectiveness, measured
in success rates

(b) Perceived confidence in error recovery

(c) Perceived usefulness for error finding (d) Perceived usefulness for error fixing
Figure 3. Between–subjects comparison of 16 tests regarding error message effectiveness, error recovery confidence, and error message usefulness for error finding
and fixing—the boxplots represent interquartile range, and whiskers minimum and maximum values, excluding outliers. (a) Error message effectiveness, measured
in success rates, (b) perceived confidence in error recovery, (c) perceived usefulness for error finding, and (d) perceived usefulness for error fixing.

Table 4. Test statistics for hypotheses H5–H7; correlations between error message effectiveness and error recovery confidence
(r.c.), and perceived error message usefulness for finding and fixing the error.

Effectiveness () r.c. Effectiveness () finding Effectiveness () fixing

CockroachDB rrb(510) ¼ .315, p < .001 rrb(510) ¼ .306, p < .001 rrb(510) ¼ .316, p < .001
SingleStore rrb(566) ¼ .336, p < .001 rrb(566) ¼ .240, p < .001 rrb(566) ¼ .258, p < .001
NuoDB rrb(702) ¼ .260, p < .001 rrb(702) ¼ .174, p < .001 rrb(702) ¼ .198, p < .001
VoltDB rrb(702) ¼ .239, p < .001 rrb(702) ¼ .178, p < .001 rrb(702) ¼ .208, p < .001

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 7

whether they had correctly fixed the query, yet the query
was correct. At least in the scope of this study, this relation-
ship suggests that the theories of neuroscience are particu-
larize in relatively specific domains, such as SQL learning
and error message research.

Regarding error message usefulness for error finding
(hypothesis H3), the results show relatively useful messages
(i.e., those of CockroachDB and NuoDB), and relatively
unuseful messages (i.e., those of SingleStore and VoltDB).
Both CockroachDB and NuoDB use a free-standing circum-
flex (Figures 1(e,h)) to denote the assumed position of the
error, while SingleStore and VoltDB (Figures 1(f,g)) replicate
the erroneous query in its entirety or partially. This observa-
tion propounds the view that in text-only query formulation,
such a simple approach makes finding errors easier. Rather
similarly, a prior study has argued for the importance of
positioning the error message close to the erroneous part
(Hundhausen et al., 2017). It is worth noting that in this
example, CockroachDB and NuoDB place the circumflex in
a different position. Although there were no statistically sig-
nificant differences in error message effectiveness, the results
show a weak positive correlation between error message
effectiveness and error message usefulness for error finding
(hypothesis H6).

NuoDB error messages were perceived as more useful
than SingleStore error messages in regards to fixing errone-
ous queries, while other differences between the DBMSs
were not statistically significant (hypothesis H4). Again,
looking at the corresponding error messages demonstrated
in Figures 1(g,h), SingleStore does not provide a reason for
the error message, while NuoDB suggests to the user what is
erroneous. What is worth noting, in this case, is that the
error messages in Figure 1 are merely a single example and
that the NuoDB suggestion is rather confusing, and does
not point to the typographical error, but to a non-erroneous
part after the error. SingleStore, on the other hand, high-
lights a part of the query which does not contain the
error—a principle argued against in a previous study
(Wrenn & Krishnamurthi, 2017). As with usefulness for
error finding, error message effectiveness was shown to have
a weak positive correlation with usefulness in error fixing
(hypothesis H7). On these grounds, it seems fair to suggest
that the issue of error message effectiveness might not be as
clear-cut as the rejected hypothesis H1 implies. As suggested
in a previous study (Prather et al., 2017), an error message
might be well designed, but the query writer does not
understand it in context. The results yielded by this study
(Hypotheses H1–H4) are in line with a previous study
(Taipalus et al., 2021) that reported SQL compiler usability
comparison in the context of traditional RDBSs using the
same four metrics (effectiveness, recovery confidence, and
perceived usefulness for error finding and fixing). The simi-
larity of the results of these studies implies that whether the
SQL compiler is more or less modern seems to play no part
regarding the observation that some error messages are per-
ceived as more useful than others, but this difference is not
necessarily reflected in error message effectiveness in terms
of error fixing success, or on error recovery confidence.

Finally, NewSQL systems often—and understandably—
claim standard-conforming SQL implementations. To test
whether the SQL test suite of 16 tests and four control ques-
tions were executable in the first place, we ran the queries
without the syntax errors in all four DBMSs subject to this
study, and all the queries passed the syntax checks.
Although the implementation of the SQL standard is not
unequivocal (Taipalus et al., 2018), and there is no SQL con-
formance testing anymore (Randolph, 2003), this testing
provides confirmatory evidence that these four NewSQL
DBMSs execute basic SQL queries without problems. This
observation may be considered a by-product of this study,
rather than an attempt of conformance testing, yet we are
not aware of up-to-date scientific reports of SQL conform-
ance of different DBMSs, or up-to-date test suites.

5.2. Recommendations for industry

In summary, we draw four recommendations for industry
from our results, and suggest that DBMS vendors (i) utilize
human-computer interaction literature in error message
design, (ii) address usability concerns ubiquitously, i.e.,
usability should extend from aspects, such as installation
and database distribution to querying, (iii) put forward the
consideration that first impressions matter, especially early
in the professional career, and that (iv) DBMS vendors
should consider pinpointing the factors that hold down
error message iteration, and consider whether these factors
can be overcome by feature prioritization. We discuss these
four recommendations in the following subsections.

5.2.1. Utilize human-computer interaction literature
Human-computer interaction is a field specifically address-
ing concerns, such as how a machine should interact with a
human, and vice versa. Because of the current state of even
NewSQL compiler error messages, we deemed enough to
point to old guidelines which are still recognized, rather
than discussing more recent error message design trends,
such as those presented by Barik (2018) or Traver (2010).
At the very least, we recommend that DBMS vendors con-
sider the five guidelines introduced by Shneiderman (1982)
40 years ago when designing compiler error messages. First,
error messages should be brief. In the context of program-
ming languages, longer error messages have been shown to
lengthen end-user response time (Nienaltowski et al., 2008),
even though longer messages arguably provide more infor-
mation to the end-user. Second, the error messages should
be formulated in a positive tone, avoiding strict or negative
words, such as error or invalid. Third, the error message
should be constructive. If possible, the error message should
provide a hint on how to fix the error. If it is not possible
to reliably provide an accurate hint, the error message
should not provide one at all. Fourth, the error message
should be specific regarding both the position of the errone-
ous part, as well as the suggestion of what is erroneous and
how to fix it. A general suggestion of referring to the DBMS
manual is not helpful. Fifth, the use of comprehensible

8 T. TAIPALUS AND H. GRAHN

language is recommended. For example, we cannot argue
for “Msg 321, Level 15, State 1, Server q7410” in Figure 1(b)
being comprehensible or helpful for a novice. Finally,
Shneiderman (1982) suggests positioning the error code (if
any) to the end of the error message. This serves as a refer-
ence point to the manual, or as a starting point in search
engine utilization, yet does not confuse a novice user at the
beginning of the error message.

5.2.2. Address usability concerns ubiquitously
As argued in Section 2.2, usability—as in usability in soft-
ware development—has been one of the selling points of
NewSQL systems, and usability should not be limited to
flexible installation and maintenance in the cloud or rela-
tively effortless database distribution. Again, if an end-user
deems query formulation in an otherwise usable DBMS dif-
ficult, this might negatively affect the user experience. If the
DBMS runs in a cloud environment, many cloud service
providers provide the end-user with many DBMS options
that are relatively effortless to deploy. In this regard, the use
of a cloud service might be a positive factor for the end-
user, but negative for the vendor of the DBMS the end–user
deemed too difficult to use. The usability aspects of cloud
computing, in general, have been necessitated previously
(Buyya et al., 2019).

5.2.3. First impressions matter
All software developers are novices at some point in their
careers. Although DBMSs are expert systems requiring a
considerable amount of knowledge to learn and effectively
use, it is not in the best interest of novices that parts of the
DBMS are—intentionally or not—obscured, as query formu-
lation is difficult as is (Taipalus, 2020b). Arguably, creating
database structures and querying them is one of the first
stages when a DBMS provides value to the end-user. It
seems fair to speculate that a negative user experience in
DBMS installation, setup, or the first querying negatively
affects how the DBMS is perceived. A growing trend in K12
education is the introduction of programming principles
and languages in general education (L�edeczi et al., 2021;
Szabo et al., 2019). For the sake of discussion, it seems a
matter of time when database topics are introduced to com-
plement programming, or as a separate topic. If an educator
deems a DBMS too difficult for students to learn, they may
choose another DBMS that more effectively satisfies usability
concerns. In contrast, positive experiences with a DBMS
may prompt novices toward using the specific DBMS later
in their careers as, e.g., software developers, database admin-
istrators, consultants, or project managers.

5.2.4. Consider what holds down better error
message design
All being said in this section, we recognize that enhancing
compiler error messages is a difficult task, and depending
on the DBMS internals, designing more effective error mes-
sages is a task of varying complexity. Previously, the

reluctance of enhancing error messages in programming lan-
guage compilers has been explained by at least three con-
cerns. First, the compiler performance degrades with more
accurate diagnostics. Second, the software developers devel-
oping the compilers and designing error messages are
experts who find it difficult to speculate how a novice would
interpret an error message. Finally, the development of bet-
ter error messages is simply not a high priority
(Alexandrescu, 1999). Given these three considerations, and
the arguments given in the previous sections, we implore
DBMS vendors to reconsider whether error message
enhancement is feasible, whether the reasons behind not
enhancing error messages are rooted in justifiable causes,
and whether error messages could be provided on different
levels of specificity and according to a user’s personal needs,
as proposed in earlier studies (McIver & Conway, 1996;
Traver, 2010).

5.3. Threats to validity

We chose to use novices as participants in this study, and
consequently, the test suite tests syntax error recovery with
relatively simple SQL queries. Arguably, it is possible that
these results do not generalize to expert users, or to more
complicated SQL queries. However, Figure 3(a) shows only
a nascent ceiling effect, indicating the complexity of the test
suite queries was not too low or too high for novice partici-
pants. Furthermore, we chose not to utilize expert partici-
pants, as experts are likely able to fix syntax errors based
more on their personal experience, and less on the error
message displayed. Finally, experts are likely experts using
one or several DBMSs. If some of the hypothetical expert
participants were familiar with one of the four tested
NewSQL DBMSs, this would have introduced another threat
to validity. In contrast, in the course from which the novice
participants were recruited for this study, the instructor fam-
iliarized the students with SQL with SQLite DBMS. This
approach ensured to a degree that the participants were not
more familiar with any of the DBMSs than the other. We
believe that using students as participants instead of experts
is appropriate considering the study design is concerned
with novice perceptions. Utilizing appropriate participants
have been argued in several prior studies (Falessi et al.,
2018; Feldt et al., 2018; Tahaei & Vaniea, 2022).

As explained in Section 3.2, we randomized the order in
which the sixteen tests were shown to participants. With
this, we aimed to mitigate the effect of skill improvement
during the study. Arguably, if we had shown the tests in the
same order for each participant, it would have been possible
that the success rates would have risen toward the end of
the study. The participants were randomly assigned to one
of the four DBMS groups. To mitigate the possibility of skill
differences of participants between the groups, the sixteen
tests were preceded by four control questions, and we com-
pared participant skills in the four groups based on the
scores from these control questions. Consequently, we
adjusted the groups accordingly, as detailed in Section 3.4.

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 9

The participants were studied in an unnatural environ-
ment. In a natural query formulation setting, a DBMS end-
user initiates a feedback loop with the DBMS—a query is
written and executed, an error message is received, the
query is fixed or rewritten, and executed until the query
returns a set of data. In our study, the query formulation
process was initiated in the middle of the loop: the partici-
pant was shown an erroneous query and a corresponding
error message, and the participant fixed the query without
receiving further feedback on the correctness of the fixed
query. As this study was to our knowledge the first pub-
lished scientific study on SQL compiler error messages in
the last 30 years, we chose this as a starting point for timely
research. Additionally, studying the feedback loop in its
entirety would have required the participants to start query
writing without a preliminary (and erroneous) query.
Depending on the participant, this setting would arguably
have resulted in different syntax errors—not necessarily all
we wanted to study, and possibly others outside the scope of
this study. Furthermore, this type of research setting would
have been more complex to manage. Finally, and as a delib-
erate choice, the chosen test suite only tests retrieval queries
containing a single syntax error. Furthermore, the test suite
does not cover all syntax errors.

5.4. Future research

As discussed in Section 5.1, subsequent studies could take
error recovery time into account to provide supplementary
insights on error message effectiveness. To the best of our
knowledge, at the time of writing, there are no such stud-
ies regarding query languages, and studies on more
detailed looks at the features of SQL compiler error mes-
sages are warranted. In particular, it might be interesting
to compare the results of novices with experts to see
whether our results generalize to a wider base of end-
users. However, as argued in Section 3.2, usability
concerns among experts might not be as important as
usability is for novices. On the other hand, an interesting
topic for further research would be to compare the error
messages of NewSQL systems with those of traditional
RDBMSs. Yet another potential future research topic is
usability in the context of the query formulation feedback
loop. Further studies could investigate the feedback loop
between the end-user and the DBMS by, e.g., studying
how many attempts it requires to fix a query. Consequent
studies could also extend the error studies to logical
(Taipalus et al., 2018) and semantic errors (Brass &
Goldberg, 2006), other types of syntax errors, or errors in
other types of SQL statements, e.g., updates, deletes, or
inserts—a research dearth indicated earlier (Taipalus &
Sepp€anen, 2020). Finally, the DBMS features that are
more and more emphasized in cloud environments or dis-
tributed DBMSs in the general warrant for usability stud-
ies regarding e.g., database distribution, MapReduce, and
the usability aspects of different application program-
ming interfaces.

6. Conclusion

In this study, we set out to study the differences in usability
of query language compiler error messages of four popular,
modern NewSQL DBMSs. The results showed statistically
significant differences in perceived usefulness of the error
messages for finding and fixing the error, and query fixing
success rates were shown to have a weak positive correlation
with error recovery confidence as well as perceived useful-
ness for error finding and error fixing. Additionally, the
results showed no statistically significant differences in query
formulation success rates between the DBMSs, indicating
that although the error messages of said systems are differ-
ent, they do not have an impact on whether an erroneous
query is eventually fixed. Similarly, there were no differences
in perceived confidence in error recovery between the four
DBMSs, which indicates that despite the different error mes-
sages, the participants were confident (or lacked confidence)
in their skill in fixing erroneous queries. This is a rather
interesting observation, since clearly many error messages
erroneously identified the position of the error, or provided
the user with erroneous hints on the nature of the error.
These results indicate that the usability of the error messages
of some of the DBMSs studied is higher than that of others
and that success rate alone may not be a sufficient metric
for measuring compiler usability. In general, these results
highlight the need for usability considerations in not just
programming languages, but in DBMS query language com-
pilers as well.

Note

1. https://db-engines.com/en/ranking.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research did not receive any specific grant from funding agencies
in the public, commercial, or not-for-profit sectors.

ORCID

Toni Taipalus http://orcid.org/0000-0003-4060-3431
Hilkka Grahn http://orcid.org/0000-0001-7567-7807

References

Abbasi, A. A., Abbasi, A., Shamshirband, S., Chronopoulos, A. T.,
Persico, V., & Pescape, A. (2019). Software-defined cloud comput-
ing: A systematic review on latest trends and developments. IEEE
Access 7, 93294–93314. https://doi.org/10.1109/ACCESS.2019.
2927822

Ahmed, U. Z., Sindhgatta, R., Srivastava, N., & Karkare, A. (2019).
Targeted example generation for compilation errors. In 2019 34th
IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE. https://doi.org/10.1109/ASE.2019.00039

10 T. TAIPALUS AND H. GRAHN

https://db-engines.com/en/ranking
https://doi.org/10.1109/ACCESS.2019.2927822
https://doi.org/10.1109/ACCESS.2019.2927822
https://doi.org/10.1109/ASE.2019.00039

Alexandrescu, A. (1999). Better template error messages. C/Cþþ Users
Journal, 17, 37–47.

Allen, G. N., & Parsons, J. (2010). Is query reuse potentially harmful?
Anchoring and adjustment in adapting existing database queries.
Information Systems Research, 21(1), 56–77. https://doi.org/10.1287/
isre.1080.0189

Ashkanasy, N., Bowen, P. L., Rohde, F. H., & Wu, C. Y. A. (2007). The
effects of user characteristics on query performance in the presence
of information request ambiguity. Journal of Information Systems,
21(1), 53–82. https://doi.org/10.2308/jis.2007.21.1.53

Bak, P., & Meyer, J. (2011). The effect of user characteristics on the
efficiency of visual querying. Behaviour & Information Technology,
30(6), 809–819. https://doi.org/10.1080/0144929X.2010.511264

Barik, T. (2018). Error messages as rational reconstructions [Doctoral
dissertation]. North Carolina State University. Retrieved from
https://repository.lib.ncsu.edu/handle/1840.20/35439

Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., &
Harrington, B. (2019). Compiler error messages considered unhelp-
ful. In Proceedings of the Working Group Reports on Innovation and
Technology in Computer Science Education. ACM. https://doi.org/10.
1145/3344429.3372508

Becker, B. A., Glanville, G., Iwashima, R., McDonnell, C., Goslin, K., &
Mooney, C. (2016). Effective compiler error message enhancement
for novice programming students. Computer Science Education,
26(2–3), 148–175. https://doi.org/10.1080/08993408.2016.1225464

Borthick, A. F., Bowen, P. L., Jones, D. R., & Tse, M. H. K. (2001).
The effects of information request ambiguity and construct incon-
gruence on query development. Decision Support Systems, 32(1),
3–25. https://doi.org/10.1016/S0167-9236(01)00097-5

Brass, S., & Goldberg, C. (2006). Semantic errors in SQL queries: A
quite complete list. Journal of Systems and Software, 79(5), 630–644.
https://doi.org/10.1016/j.jss.2005.06.028

Buyya, R., Srirama, S. N., Casale, G., Calheiros, R., Simmhan, Y.,
Varghese, B., Gelenbe, E., Javadi, B., Vaquero, L. M., Netto,
M. A. S., Toosi, A. N., Rodriguez, M. A., Llorente, I. M., Vimercati,
S. D. C. D., Samarati, P., Milojicic, D., Varela, C., Bahsoon, R.,
Assuncao, M. D. D., … Shen, H. (2019). A manifesto for future
generation cloud computing: Research directions for the next dec-
ade. ACM Computing Surveys, 51(5), 1–38. https://doi.org/10.1145/
3241737

Chamberlin, D. D. (2012). Early history of SQL. IEEE Annals of the
History of Computing, 34(4), 78–82. https://doi.org/10.1109/MAHC.
2012.61

Chaudhry, N., & Yousaf, M. M. (2020). Architectural assessment of
NoSQL and NewSQL systems. Distributed and Parallel Databases,
38(4), 881–926. https://doi.org/10.1007/s10619-020-07310-1

Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J.,
Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W.,
Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura, D.,
Nagle, D., Quinlan, S., … Woodford, D. (2013). Spanner. ACM
Transactions on Computer Systems, 31(3), 1–22. https://doi.org/10.
1145/2491245

Donahue, G. (2001). Usability and the bottom line. IEEE Software,
18(1), 31–37. https://doi.org/10.1109/52.903161

Dong, T., & Khandwala, K. (2019). The impact of “cosmetic” changes
on the usability of error messages. In Extended Abstracts of the 2019
CHI Conference on Human Factors in Computing Systems. ACM.
https://doi.org/10.1145/2F3290607.3312978

Dunn, O. J. (1964). Multiple comparisons using rank sums.
Technometrics, 6(3), 241–252. https://doi.org/10.1080/00401706.1964.
10490181

Falessi, D., Juristo, N., Wohlin, C., Turhan, B., M€unch, J., Jedlitschka,
A., & Oivo, M. (2018). Empirical software engineering experts on
the use of students and professionals in experiments. Empirical
Software Engineering, 23(1), 452–489. https://doi.org/10.1007/s10664-
017-9523-3

Feldt, R., Zimmermann, T., Bergersen, G. R., Falessi, D., Jedlitschka,
A., Juristo, N., M€unch, J., Oivo, M., Runeson, P., Shepperd, M.,
Sjøberg, D. I. K., & Turhan, B. (2018). Four commentaries on the
use of students and professionals in empirical software engineering

experiments. Empirical Software Engineering, 23(6), 3801–3820.
https://doi.org/10.1007/s10664-018-9655-0

Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J., & Rees, G. (2010).
Relating introspective accuracy to individual differences in brain
structure. Science, 329(5998), 1541–1543. https://doi.org/10.1126/sci-
ence.1191883

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., &
Marsault, V. (2018). Cypher: An evolving query language for prop-
erty graphs. In Proceedings of the 2018 International Conference on
Management of Data (p. 1433–1445). Association for Computing
Machinery. https://doi.org/10.1145/3183713.3190657

Grolinger, K., Higashino, W. A., Tiwari, A., & Capretz, M. A. (2013).
Data management in cloud environments: NoSQL and NewSQL
data stores. Journal of Cloud Computing: Advances, Systems and
Applications, 2(1), 22. https://doi.org/10.1186/2192-113X-2-22

Hacigumus, H., Iyer, B., & Mehrotra, S. (2002). Providing database as a
service. In Proceedings 18th International Conference on Data
Engineering (pp. 29–38).

Hellerstein, J. M., Stonebraker, M., & Hamilton, J. (2007). Architecture
of a database system. Foundations and Trends in Databases, 1(2),
141–259. https://doi.org/10.1561/1900000002

Hundhausen, C. D., Olivares, D. M., & Carter, A. S. (2017). IDE-based
learning analytics for computing education. ACM Transactions on
Computing Education, 17(3), 1–26. https://doi.org/10.1145/3105759

ISO (2018). ISO 9241-11:2018, “Ergonomics of human-system inter-
action — Part 11: Usability: Definitions and concepts”. ISO.
Retrieved from https://www.iso.org/standard/63500.html

ISO/IEC (2016a). ISO/IEC 9075-1:2016, “SQL – Part 1: Framework”.
ISO/IEC. Retrieved from https://www.iso.org/standard/63555.html

ISO/IEC (2016b). ISO/IEC 9075-2:2016, “SQL – Part 2: Foundation”.
ISO/IEC. Retrieved from https://www.iso.org/standard/63556.html

Kaur, K., & Sachdeva, M. (2017). Performance evaluation of NewSQL
databases. In 2017 International Conference on Inventive Systems
and Control (ICISC). IEEE. https://doi.org/10.1109/ICISC.2017.
8068585

L�edeczi, A., Grover, S., Catete, V., & Broll, B. (2021). Beyond CS prin-
ciples: Bringing the frontiers of computing to K12. In Proceedings of
the 52nd ACM Technical Symposium on Computer Science Education
(p. 1379). Association for Computing Machinery. https://doi.org/10.
1145/3408877.3439542

Martino, B. D., Fleming, S. M., Garrett, N., & Dolan, R. J. (2013).
Confidence in value-based choice. Nature Neuroscience, 16(1),
105–110. https://doi.org/10.1038/nn.3279

McIver, L., & Conway, D. (1996). Seven deadly sins of introductory
programming language design. In Proceedings 1996 International
Conference Software Engineering: Education and Practice. IEEE
Computer Society Press. https://doi.org/10.1109/SEEP.1996.534015

Miedema, D., Aivaloglou, E., & Fletcher, G. (2021). Identifying SQL
misconceptions of novices: Findings from a think-aloud study. In
Proceedings of the 17th ACM Conference on International Computing
Education Research. ACM. https://doi.org/10.1145/3446871.3469759

Nicolaos, P., & Katerina, T. (2015). Simple-talking database develop-
ment: Let the end-user design a relational schema by using simple
words. Computers in Human Behavior, 48, 273–289. https://doi.org/
10.1016/j.chb.2015.02.002

Nienaltowski, M.-H., Pedroni, M., & Meyer, B. (2008). Compiler error
messages. ACM SIGCSE Bulletin, 40(1), 168–172. https://doi.org/10.
1145/1352322.1352192

Oracle Corporation (2021). Oracle8i Release 8.1.6 Documentation.
Author. Retrieved from https://www.oracle.com/database/technolo-
gies/oracle8i.html

Pavlo, A., & Aslett, M. (2016). What’s really new with NewSQL? ACM
SIGMOD Record, 45(2), 45–55. https://doi.org/10.1145/3003665.
3003674

Prather, J., Pettit, R., McMurry, K. H., Peters, A., Homer, J., Simone,
N., & Cohen, M. (2017). On novices’ interaction with compiler error
messages: A human factors approach. In Proceedings of the 2017
ACM Conference on International Computing Education Research
(pp. 74–82). Association for Computing Machinery. https://doi.org/
10.1145/3105726.3106169

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 11

https://doi.org/10.1287/isre.1080.0189
https://doi.org/10.1287/isre.1080.0189
https://doi.org/10.2308/jis.2007.21.1.53
https://doi.org/10.1080/0144929X.2010.511264
https://repository.lib.ncsu.edu/handle/1840.20/35439
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1016/S0167-9236(01)00097-5
https://doi.org/10.1016/j.jss.2005.06.028
https://doi.org/10.1145/3241737
https://doi.org/10.1145/3241737
https://doi.org/10.1109/MAHC.2012.61
https://doi.org/10.1109/MAHC.2012.61
https://doi.org/10.1007/s10619-020-07310-1
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
https://doi.org/10.1109/52.903161
https://doi.org/10.1145/2F3290607.3312978
https://doi.org/10.1080/00401706.1964.10490181
https://doi.org/10.1080/00401706.1964.10490181
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.1126/science.1191883
https://doi.org/10.1126/science.1191883
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1186/2192-113X-2-22
https://doi.org/10.1561/1900000002
https://doi.org/10.1145/3105759
https://www.iso.org/standard/63500.html
https://www.iso.org/standard/63555.html
https://www.iso.org/standard/63556.html
https://doi.org/10.1109/ICISC.2017.8068585
https://doi.org/10.1109/ICISC.2017.8068585
https://doi.org/10.1145/3408877.3439542
https://doi.org/10.1145/3408877.3439542
https://doi.org/10.1038/nn.3279
https://doi.org/10.1109/SEEP.1996.534015
https://doi.org/10.1145/3446871.3469759
https://doi.org/10.1016/j.chb.2015.02.002
https://doi.org/10.1016/j.chb.2015.02.002
https://doi.org/10.1145/1352322.1352192
https://doi.org/10.1145/1352322.1352192
https://www.oracle.com/database/technologies/oracle8i.html
https://www.oracle.com/database/technologies/oracle8i.html
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/3105726.3106169

Ramakrishnan, R. (2012). CAP and cloud data management. Computer
Magazine, 45(2), 43–49. https://doi.org/10.1109/MC.2011.388

Randolph, G. B. (2003). The forest and the trees: Using Oracle and
SQL Server together to teach ANSI-standard SQL. In Proceedings of
the 4th ACM Conference on Information Technology Curriculum
(CITC) (pp. 234–236). ACM. https://doi.org/10.1145/947121.947174

Reisner, P. (1981). Human factors studies of database query languages:
A survey and assessment. ACM Computing Surveys, 13(1), 13–31.
https://doi.org/10.1145/356835.356837

Ribeiro, R. A., & Moreira, A. M. (2003). Fuzzy query interface for a
business database. International Journal of Human-Computer
Studies, 58(4), 363–391. https://doi.org/10.1016/S1071-
5819(03)00010-7

Schreiner, G. A., Knob, R., Duarte, D., Vilain, P., & Santos Mello, R. d
(2019). NewSQL through the looking glass. In Proceedings of the
21st International Conference on Information Integration and Web-
Based Applications & Services. ACM. https://doi.org/10.1145/
2F3366030.3366080

Shi, Y., Meng, X., Zhao, J., Hu, X., Liu, B., & Wang, H. (2010).
Benchmarking cloud-based data management systems. In
Proceedings of the Second International Workshop on Cloud Data
Management (pp. 47–54). Association for Computing Machinery.
https://doi.org/10.1145/1871929.1871938

Shin, S.-S. (2020). Structured query language learning: Concept map-
based instruction based on cognitive load theory. IEEE Access, 8,
100095–100110. https://doi.org/10.1109/ACCESS.2020.2997934

Shneiderman, B. (1982). Designing computer system messages.
Communications of the ACM, 25(9), 610–611. https://doi.org/10.
1145/358628.358639

Siau, K. L., Chan, H. C., & Wei, K. K. (2004). Effects of query com-
plexity and learning on novice user query performance with concep-
tual and logical database interfaces. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, 34(2), 276–281.
https://doi.org/10.1109/TSMCA.2003.820581

Smelcer, J. B. (1995). User errors in database query composition.
International Journal of Human-Computer Studies, 42(4), 353–381.
https://doi.org/10.1006/ijhc.1995.1017

Sobiesiak, R., Jones, R. J., & Lewis, S. M. (2002). DB2 universal data-
base: A case study of a successful user-centered design program.
International Journal of Human-Computer Interaction, 14(3),
279–306. https://doi.org/10.1207/S15327590IJHC143&4_02

Somu, N., Kirthivasan, K., & Sriram, V. S. (2017). A computational
model for ranking cloud service providers using hypergraph based
techniques. Future Generation Computer Systems, 68, 14–30. https://
doi.org/10.1016/j.future.2016.08.014

Stonebraker, M. (2010). SQL databases v. NoSQL databases.
Communications of the ACM, 53(4), 10–11. https://doi.org/10.1145/
1721654.1721659

Sutcliffe, A., Ryan, M., Doubleday, A., & Springett, M. (2000). Model
mismatch analysis: Towards a deeper explanation of users’ usability
problems. Behaviour & Information Technology, 19(1), 43–55.
https://doi.org/10.1080/014492900118786

Szabo, C., Sheard, J., Luxton-Reilly, A., Simon Becker, B. A., & Ott, L.
(2019). Fifteen years of introductory programming in schools: A glo-
bal overview of K-12 initiatives. In Proceedings of the 19th Koli
Calling International Conference on Computing Education Research.
Association for Computing Machinery. https://doi.org/10.1145/
3364510.3364513

Tahaei, M., & Vaniea, K. (2022). Recruiting participants with program-
ming skills: A comparison of four crowdsourcing platforms and a cs
student mailing list. In CHI Conference on Human Factors in
Computing Systems (CHI ’22). ACM. https://doi.org/10.1145/
3491102.3501957

Taipalus, T. (2019). Teaching tip: A notation for planning SQL queries.
Journal of Information Systems Education, 30(3), 160–166. http://
jise.org/Volume30/n3/JISEv30n3p160.pdf

Taipalus, T. (2020a). The effects of database complexity on SQL query
formulation. Journal of Systems and Software, 165, 110576. https://
doi.org/10.1016/j.jss.2020.110576

Taipalus, T. (2020b). Explaining causes behind SQL query formulation
errors. In 2020 IEEE Frontiers in Education Conference (FIE) (pp.
1–9). https://doi.org/10.1109/FIE44824.2020.9274114

Taipalus, T., & Per€al€a, P. (2019). What to expect and what to focus on
in SQL query teaching. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (SIGCSE) (pp. 198–203).
ACM. https://doi.org/10.1145/3287324.3287359

Taipalus, T., & Sepp€anen, V. (2020). SQL education: A systematic map-
ping study and future research agenda. ACM Transactions on
Computing Education, 20(3), 1–33. https://doi.org/10.1145/3398377

Taipalus, T., Grahn, H., & Ghanbari, H. (2021). Error messages in rela-
tional database management systems: A comparison of effectiveness,
usefulness, and user confidence. Journal of Systems and Software,
181, 111034. https://doi.org/10.1016/j.jss.2021.111034

Taipalus, T., Siponen, M., & Vartiainen, T. (2018). Errors and compli-
cations in SQL query formulation. ACM Transactions on Computing
Education, 18(3), 1–29. https://doi.org/10.1145/3231712

Tanin, E., Lotem, A., Haddadin, I., Shneiderman, B., Plaisant, C., &
Slaughter, L. (2000). Facilitating data exploration with query pre-
views: A study of user performance and preference. Behaviour &
Information Technology, 19(6), 393–403. https://doi.org/10.1080/
014492900750052651

Toorn, C. V., Kirshner, S. N., & Gabb, J. (2022). Gamification of
query-driven knowledge sharing systems. Behaviour & Information
Technology, 41(5), 959. https://doi.org/10.1080/0144929X.2020.
1849401

Traver, V. J. (2010). On compiler error messages: What they say and
what they mean. Advances in Human-Computer Interaction, 2010,
1–26. https://doi.org/10.1155/2010/602570

van der Schaaf, T. (1995). Human recovery of errors in man-machine
systems. IFAC Proceedings Volumes, 28(15), 71–76. https://doi.org/
10.1016/s1474-6670%2817%2945211-6

Victorelli, E. Z., Reis, J. C. D., Hornung, H., & Prado, A. B. (2020).
Understanding human-data interaction: Literature review and rec-
ommendations for design. International Journal of Human-
Computer Studies, 134, 13–32. https://doi.org/10.1016/j.ijhcs.2019.09.
004

Wang, G., & Tang, J. (2012). The NoSQL principles and basic applica-
tion of Cassandra model. In 2012 International Conference on
Computer Science and Service System (pp. 1332–1335).

Welty, C., & Stemple, D. W. (1981). Human factors comparison of a
procedural and a nonprocedural query language. ACM Transactions
on Database Systems, 6(4), 626–649. https://doi.org/10.1145/319628.
319656

Wrenn, J., & Krishnamurthi, S. (2017). Error messages are classifiers: a
process to design and evaluate error messages. In Proceedings of the
2017 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. ACM.
https://doi.org/10.1145/3133850.3133862

Zapf, D., & Reason, J. T. (1994). Introduction: Human errors and error
handling. Applied Psychology, 43(4), 427–432. https://doi.org/10.
1111/j.1464-0597.1994.tb00838.x

About the Authors

Toni Taipalus is a researcher and teacher at the Faculty of Information
Technology, University of Jyv€askyl€a, Finland. His research has been
published in journals such as Journal of Systems and Software and
ACM Transactions on Computing Education. His current research inter-
ests include query languages, database management systems, and com-
puting education.

Hilkka Grahn is a researcher and teacher at the Faculty of Information
Technology, University of Jyv€askyl€a, Finland. Her research has been
published in journals such as International Journal of
Human–Computer Studies and Accident Analysis & Prevention. Her
current research interests include human–computer interaction, driver
distraction, and human factors.

12 T. TAIPALUS AND H. GRAHN

https://doi.org/10.1109/MC.2011.388
https://doi.org/10.1145/947121.947174
https://doi.org/10.1145/356835.356837
https://doi.org/10.1016/S1071-5819(03)00010-7
https://doi.org/10.1016/S1071-5819(03)00010-7
https://doi.org/10.1145/2F3366030.3366080
https://doi.org/10.1145/2F3366030.3366080
https://doi.org/10.1145/1871929.1871938
https://doi.org/10.1109/ACCESS.2020.2997934
https://doi.org/10.1145/358628.358639
https://doi.org/10.1145/358628.358639
https://doi.org/10.1109/TSMCA.2003.820581
https://doi.org/10.1006/ijhc.1995.1017
https://doi.org/10.1207/S15327590IJHC1434_02
https://doi.org/10.1016/j.future.2016.08.014
https://doi.org/10.1016/j.future.2016.08.014
https://doi.org/10.1145/1721654.1721659
https://doi.org/10.1145/1721654.1721659
https://doi.org/10.1080/014492900118786
https://doi.org/10.1145/3364510.3364513
https://doi.org/10.1145/3364510.3364513
https://doi.org/10.1145/3491102.3501957
https://doi.org/10.1145/3491102.3501957
http://jise.org/Volume30/n3/JISEv30n3p160.pdf
http://jise.org/Volume30/n3/JISEv30n3p160.pdf
https://doi.org/10.1016/j.jss.2020.110576
https://doi.org/10.1016/j.jss.2020.110576
https://doi.org/10.1109/FIE44824.2020.9274114
https://doi.org/10.1145/3287324.3287359
https://doi.org/10.1145/3398377
https://doi.org/10.1016/j.jss.2021.111034
https://doi.org/10.1145/3231712
https://doi.org/10.1080/014492900750052651
https://doi.org/10.1080/014492900750052651
https://doi.org/10.1080/0144929X.2020.1849401
https://doi.org/10.1080/0144929X.2020.1849401
https://doi.org/10.1155/2010/602570
https://doi.org/10.1016/s1474-667028172945211-6
https://doi.org/10.1016/s1474-667028172945211-6
https://doi.org/10.1016/j.ijhcs.2019.09.004
https://doi.org/10.1016/j.ijhcs.2019.09.004
https://doi.org/10.1145/319628.319656
https://doi.org/10.1145/319628.319656
https://doi.org/10.1145/3133850.3133862
https://doi.org/10.1111/j.1464-0597.1994.tb00838.x
https://doi.org/10.1111/j.1464-0597.1994.tb00838.x

	Abstract
	Introduction
	Theoretical background
	Data management in the cloud
	Query language usability
	Error messages and error recovery

	Research setting
	Study scope
	Data collection
	Hypotheses
	Data preparation and mitigation of control variables

	Results
	A summary of results
	Database management system group differences
	Correlations

	Discussion
	Implications for research
	Recommendations for industry
	Utilize human-computer interaction literature
	Address usability concerns ubiquitously
	First impressions matter
	Consider what holds down better error messagedesign

	Threats to validity
	Future research

	Conclusion
	Disclosure statement
	Funding
	Orcid
	References

